symptoms, which could influence the completeness
of the data collected throughout the day. These factors
must be considered in future studies to improve the
generalizability and applicability of the findings to
the PD population.
The integration of wearable devices into these
mHealth solutions can offer significant advantages,
including real-time detection of motor fluctuations,
improved tracking of disease progression, and more
personalized treatment strategies. These technologies
represent a transformative step in PD management,
providing clinicians with detailed, patient-specific
insights. Future research will focus on optimizing
data analysis algorithms to enhance the accuracy and
reliability of symptom detection in diverse real-world
scenarios.
ACKNOWLEDGEMENTS
This paper is part of the BIOCLITE research project
PID2021-123708OB-I00, funded by MCIN/AEI/
10.13039/501100011033/FEDER, EU.
REFERENCES
Armstrong, M., & Okun, M. (2020). Diagnosis and
Treatment of Parkinson Disease: A Review. Jama, 323,
548. https://doi.org/10.1001/jama.2019.22360
Borzì, L., Sigcha, L., & Olmo, G. (2023). Context
Recognition Algorithms for Energy-Efficient Freezing-
of-Gait Detection in Parkinson’s Disease. Sensors,
23(9), 4426.
Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T.,
Fahn, S., Martinez-Martin, P.,…LaPelle, N. (2008).
Movement Disorder Society-sponsored revision of the
Unified Parkinson's Disease Rating Scale (MDS-
UPDRS): Scale presentation and clinimetric testing
results. Movement Disorders, 23(15), 2129-2170.
https://doi.org/https://doi.org/10.1002/mds.22340
Mahadevan, N., Demanuele, C., Zhang, H., Volfson, D.,
Ho, B., Erb, M., & Patel, S. (2020). Development of
digital biomarkers for resting tremor and bradykinesia
using a wrist-worn wearable device. npj Digital
Medicine, 3, 5. https://doi.org/10.1038/s41746-019-
0217-7
Mantri, S., Lepore, M., Edison, B., Daeschler, M., Kopil,
C., Marras, C., & Chahine, L. (2021). The Experience
of OFF Periods in Parkinson’s Disease: Descriptions,
Triggers, and Alleviating Factors. Journal of Patient-
Centered Research and Reviews, 8, 232-238.
https://doi.org/10.17294/2330-0698.1836
Monje, M., Foffani, G., Obeso, J., & Sánchez-Ferro, A.
(2019). New Sensor and Wearable Technologies to Aid
in the Diagnosis and Treatment Monitoring of
Parkinson's Disease. Annual Review of Biomedical
Engineering, 21, 111-143. https://doi.org/10.1146/
annurev-bioeng-062117-121036
Polvorinos-Fernández, C., Pavón, I., & Sigcha, L. (2024).
Smartwatch gait dataset in simulated Parkinson's
disease restricted arm swing conditions (Zenodo.
https://doi.org/10.5281/zenodo.13884808
Polvorinos-Fernández, C., Sigcha, L. F., Borzí, L., Olmo,
G., Asensio, C., Lopez Navarro, J. M.,…Pavón, I.
(2024). Evaluating Motor Symptoms in Parkinson’s
Disease Through Wearable Sensors: A Systematic
Review of Digital Biomarkers. Applied Sciences, 14,
10189. https://doi.org/10.3390/app142210189
Polvorinos-Fernández, C., Sigcha, L. F., Pablo, L., Borzí,
L., Cardoso, P., Costa, N.,…Pavón, I. (2024, 01).
Evaluation of the Performance of Wearables’ Inertial
Sensors for the Diagnosis of Resting Tremor in
Parkinson’s Disease
Rodríguez-Martín, D., Cabestany, J., Pérez, C., Pie, M.,
Calvet, J., Samà Monsonís, A.,…Rodríguez-Molinero,
A. (2022). A New Paradigm in Parkinson's Disease
Evaluation With Wearable Medical Devices: A Review
of STAT-ON. Frontiers in Neurology, 13, 912343.
https://doi.org/10.3389/fneur.2022.912343
Ru, X., Gu, N., Shang, H., & Zhang, H. (2022). MEMS
Inertial Sensor Calibration Technology: Current Status
and Future Trends.
Micromachines, 13(6), 879.
Sigcha, L., Pavón, I., De Arcas, G., Costa, N., Costa, S.,
Arezes, P.,…Polvorinos, C. (2023). Monipar
Database: smartwatch movement data to monitor
motor competency in subjects with Parkinson's disease
(Zenodo. https://doi.org/10.5281/zenodo.8104853
Sigcha, L., Polvorinos-Fernández, C., Costa, N., Costa, S.,
Arezes, P., Gago, M.,…Pavón, I. (2023). Monipar:
movement data collection tool to monitor motor
symptoms in Parkinson’s disease using smartwatches
and smartphones [Original Research]. Frontiers in
Neurology, 14. https://doi.org/10.3389/
fneur.2023.1326640
TECAPARK. https://www.i2a2.upm.es/tecapark/
Thomas Kollamkulam, M. a. L. A. a. P. P. (2017).
Handwriting Analysis in Parkinson's Disease: Current
Status and Future Directions. Movement Disorders
Clinical Practice, 4. https://doi.org/10.1002/
mdc3.12552