
sparse situations (few number of sources and few data
points). We give convergence and sub-optimality re-
sults. The proposed algorithm is evaluated in compar-
ison with classical state of the art methods in realistic
simulated situations. More results, including in fre-
quency domain on narrow band data, as well as on
real (S)EEG signals will be presented elsewhere.
REFERENCES
Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD:
An algorithm for designing overcomplete dictionaries
for sparse representation. IEEE Transactions on Sig-
nal Processing, 54(11):4311–4322.
Baillet, S., Mosher, J., and Leahy, R. (2001). Electromag-
netic brain mapping. IEEE Signal Processing Maga-
zine, 18(6):14–30.
Becker, H., Albera, L., Comon, P., Gribonval, R., Wendling,
F., and Merlet, I. (2014). A performance study of var-
ious brain source imaging approaches. In IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5869–5873.
Dale, A. M. and Sereno, M. I. (1993). Improved Local-
izadon of Cortical Activity by Combining EEG and
MEG with MRI Cortical Surface Reconstruction: A
Linear Approach. Journal of Cognitive Neuroscience,
5(2):162–176.
Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McK-
instry, R. C., and Collins, D. L. (2011). Unbiased
average age-appropriate atlases for pediatric studies.
NeuroImage, 54(1):313 – 327.
Gramfort, A., Strohmeier, D., Haueisen, J., Hämäläinen,
M., and Kowalski, M. (2013). Time-frequency mixed-
norm estimates: Sparse M/EEG imaging with non-
stationary source activations. NeuroImage, 70:410–
422.
Hämäläinen, M. S. and Ilmoniemi, R. J. (1994). Interpret-
ing magnetic fields of the brain: minimum norm esti-
mates. Medical & Biological Engineering & Comput-
ing, 32(1):35–42.
He, B., Sohrabpour, A., Brown, E., and Liu, Z. (2018).
Electrophysiological source imaging: A noninvasive
window to brain dynamics. Annual Review of Biomed-
ical Engineering, 20(1):171–196.
He, B., Yang, L., Wilke, C., and Yuan, H. (2011). Electro-
physiological imaging of brain activity and connectiv-
ity - challenges and opportunities. IEEE Transactions
on Biomedical Engineering, 58(7):1918–1931.
Hernandez-Castañon, V. (2023). Localization of brain os-
cillatory sources from (S)EEG recordings. PhD thesis,
Université de Lorraine.
Korats, G., Cam, S. L., Ranta, R., and Louis-Dorr, V.
(2016). A space-time-frequency dictionary for sparse
cortical source localization. IEEE Transactions on
Biomedical Engineering, 63(9):1966–1973.
Le Cam, S., Ranta, R., Caune, V., Korats, G., Koessler, L.,
Maillard, L., and Louis-Dorr, V. (2017). SEEG dipole
source localization based on an empirical bayesian ap-
proach taking into account forward model uncertain-
ties. NeuroImage, 153(Supplement C):1 – 15.
Logothethis, N., Kayser, C., and Oeltermann, A. (2007). In
vivo measurement of cortical impedance spectrum in
monkeys: Implications for signal propagation. Neu-
ron, 55:809–823.
Mäkelä, N., Stenroos, M., Sarvas, J., and Ilmoniemi, R. J.
(2018). Truncated RAP-MUSIC (TRAP-MUSIC) for
MEG and EEG source localization. NeuroImage,
167:73–83.
Michel, C., Murray, M., Lantz, G., Gonzalez, S., Spinelli,
L., and Grave de Peralta, R. (2004). EEG source imag-
ing. Clinical neurophysiology, 115(10):2195–2222.
Mosher, J. C. and Leahy, R. M. (1999). Source localiza-
tion using recursively applied and projected (RAP)
MUSIC. IEEE Transactions on Signal Processing,
47(2):332–340.
Pascual-Marqui, R. D. (2007). Discrete, 3D dis-
tributed, linear imaging methods of electric neu-
ronal activity. Part 1: exact, zero error localiza-
tion. arXiv:0710.3341 [math-ph], 2007-October-17,
http://arxiv.org/pdf/0710.3341, pages 1–16.
Ranta, R., Le Cam, S., Tyvaert, L., and Louis-Dorr, V.
(2017). Assesing human brain impedance using si-
multaneous surface and intracerebral recordings. Neu-
roscience, 343:411–422.
Soussen, C., Idier, J., Brie, D., and Duan, J. (2011).
From Bernoulli-Gaussian deconvolution to sparse sig-
nal restoration. Signal Processing, IEEE Transactions
on, 59(10):4572–4584.
Soussen, C., Idier, J., Duan, J., and Brie, D. (2015).
Homotopy based algorithms for ℓ
0
-regularized least-
squares. IEEE Transactions on Signal Processing,
63(13):3301–3316.
BIOSIGNALS 2025 - 18th International Conference on Bio-inspired Systems and Signal Processing
826