
REFERENCES
Albash, T. and Lidar, D. A. (2018). Demonstration of a scal-
ing advantage for a quantum annealer over simulated
annealing. Physical Review X, 8(3):031016.
Arute, F. et al. (2019). Quantum supremacy using a
programmable superconducting processor. Nature,
574(7779):505–510.
Awasthi, A., B
¨
ar, F., Doetsch, J., Ehm, H., Erdmann,
M., Hess, M., Klepsch, J., Limacher, P. A., Luckow,
A., Niedermeier, C., Palackal, L., Pfeiffer, R., Ross,
P., Safi, H., Sch
¨
onmeier-Kromer, J., von Sicard, O.,
Wenger, Y., Wintersperger, K., and Yarkoni, S. (2023).
Quantum computing techniques for multi-knapsack
problems. In Arai, K., editor, Intelligent Computing,
pages 264–284. Springer Nature Switzerland.
Blekos, K., Brand, D., Ceschini, A., Chou, C.-H., Li, R.-
H., Pandya, K., and Summer, A. (2024). A review on
quantum approximate optimization algorithm and its
variants. Physics Reports, 1068:1–66. A review on
Quantum Approximate Optimization Algorithm and
its variants.
Boros, E. and Hammer, P. L. (2002). Pseudo-boolean op-
timization. Discrete Applied Mathematics, 123(1–
3):155–225.
Boros, E., Hammer, P. L., and Tavares, G. (2006). Prepro-
cessing of unconstrained quadratic binary optimiza-
tion. Technical Report RRR 10-2006, Rutgers Univer-
sity, New Jersey, USA. RUTCOR Research Report.
D-Wave (2022). What is quantum annealing? Accessed:
2024-11-11.
Dam, W. v., Eldefrawy, K., Genise, N., and Parham, N.
(2021). Quantum optimization heuristics with an ap-
plication to knapsack problems. In 2021 IEEE Inter-
national Conference on Quantum Computing and En-
gineering (QCE), pages 160–170. IEEE.
Das, A. and Chakrabarti, B. K. (2008). Colloquium: Quan-
tum annealing and analog quantum computation. Rev.
Mod. Phys., 80:1061–1081.
Farhi, E., Goldstone, J., and Gutmann, S. (2014). A quan-
tum approximate optimization algorithm.
Garc
´
ıa, M. D., Ayodele, M., and Moraglio, A. (2022). Ex-
act and sequential penalty weights in quadratic uncon-
strained binary optimisation with a digital annealer. In
Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, GECCO ’22, page
184–187, New York, NY, USA. Association for Com-
puting Machinery.
Glover, F., Kochenberger, G., and Du, Y. (2019). A tu-
torial on formulating and using qubo models. arXiv
preprint, arXiv:1811.11538.
Glover, F., Kochenberger, G., Hennig, R., Lewis, M., L
¨
u, Z.,
Wang, H., and Wang, Y. (2022). Quantum bridge ana-
lytics i: a tutorial on formulating and using qubo mod-
els. Annals of Operations Research, 314:141–183.
Gurobi Optimization, LLC (2024). Gurobi Optimizer Ref-
erence Manual.
Lucas, A. (2014). Ising formulations of many np problems.
Frontiers in Physics, 2.
Pecyna, T. and R
´
o
˙
zycki, R. (2024). Improving quantum
optimization algorithms by constraint relaxation. Ap-
plied Sciences, 14(18):8099.
Powell, M. J. D. (1994). A direct search optimization
method that models the objective and constraint func-
tions by linear interpolation. Advances in Optimiza-
tion and Numerical Analysis, pages 51–67.
Pusey-Nazzaro, L. and Date, P. (2020). Adiabatic quantum
optimization fails to solve the knapsack problem. Ac-
cessed: 2024-12-04.
Quintero, R. A. and Zuluaga, L. F. (2021). Characterizing
and benchmarking qubo reformulations of the knap-
sack problem. Technical report, Department of In-
dustrial and Systems Engineering, Lehigh University.
Technical Report.
Verma, A. and Lewis, M. (2022). Penalty and partitioning
techniques to improve performance of qubo solvers.
Discrete Optimization, 44:100594. Quadratic Combi-
natorial Optimization Problems.
Quantum Approaches to the 0/1 Multi-Knapsack Problem: QUBO Formulation, Penalty Parameter Characterization and Analysis
823