
replicate the adaptive and responsive nature of human
interviewers. Expanding the chatbot’s multilingual
capabilities and ensuring cultural sensitivity in its re-
sponses are also critical areas for development, partic-
ularly in ethnographic research involving diverse par-
ticipant populations.
AI chatbots can serve as effective tools for qualita-
tive data collection, especially in scenarios requiring
scalability and consistency in things such as language.
Organizations conducting large-scale or geographi-
cally dispersed studies may benefit from deploying
chatbots as a supplement or alternative to human in-
terviewers. Additionally, chatbots may be particularly
valuable for sensitive topics, where participants might
feel more comfortable discussing personal issues with
a machine.
In conclusion, while AI chatbots are unlikely to
fully replace human interviewers, they offer a com-
plementary tool to enhance the reach, efficiency, and
consistency of qualitative research. With continued
refinement, chatbots have the potential to play a sig-
nificant role in the future of qualitative data collection.
REFERENCES
Abdul-Kader, S. A. and Woods, J. (2015). Survey on chat-
bot design techniques in speech conversation systems.
International Journal of Advanced Computer Science
and Applications, 6(7):72–80.
Barocas, S., Hardt, M., and Narayanan, A. (2019). Fairness
and Machine Learning. fairmlbook.org.
Brinkmann, S. (2018). The Interview. Sage Publications,
5th edition.
Datatilsynet (2024). Hvad siger reglerne? Accessed: 2024-
06-01.
Gill, P., Stewart, K., Treasure, E., and Chadwick, B. (2008).
Methods of data collection in qualitative research: in-
terviews and focus groups. British Dental Journal,
204(6):291–295.
Ho, A., Hancock, J., and Miner, A. S. (2018). Psychologi-
cal, relational, and emotional effects of self-disclosure
after conversations with a chatbot. Journal of Commu-
nication, 68(4):712–733.
Kato, J. et al. (2001). A model for navigating interview
processes in requirements elicitation.
Klopfenstein, L. C., Delpriori, S., Malatini, S., and Bogli-
olo, A. (2017). The Rise of Bots: A Survey of Conver-
sational Interfaces, Patterns, and Paradigms.
Laranjo, L., Dunn, A. G., Tong, H., Kocaballi, A. B.,
Chen, J., Bashir, R., and Coiera, E. (2018). Conversa-
tional agents in healthcare: a systematic review. Jour-
nal of the American Medical Informatics Association,
25(9):1248–1258.
Lautrup, A. D., Hyrup, T., Schneider-Kamp, A., Dahl, M.,
Lindholt, J. S., and Schneider-Kamp, P. (2023). Heart-
to-heart with chatgpt: the impact of patients consult-
ing ai for cardiovascular health advice. Open Heart,
10(2).
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettle-
moyer, L. (2019). Bart: Denoising sequence-to-
sequence pre-training for natural language genera-
tion, translation, and comprehension. arXiv preprint
arXiv:1910.13461.
McTear, M. F. (2002). Spoken dialogue technology: en-
abling the conversational user interface. 34(1).
MistralAI (2024). Mistral: A gdpr-compliant ai model.
https://www.mistral.ai.
Opdenakker, R. (2006). Advantages and disadvantages of
four interview techniques in qualitative research. Fo-
rum Qualitative Sozialforschung/Forum: Qualitative
Social Research, 7(4).
OpenAI (2023). Chatgpt: Optimizing language models for
dialogue. https://openai.com/blog/chatgpt.
Rietz, T. and Maedche, A. (2023). Ladderbot—a con-
versational agent for human-like online laddering in-
terviews. International Journal of Human-Computer
Studies, 171:102969.
Shuster, K., Xu, J., Komeili, M., Ju, D., Smith, E. M.,
Roller, S., Ung, M., Chen, M., Arora, K., Lane, J.,
Behrooz, M., Ngan, W., Poff, S., Goyal, N., Szlam,
A., Boureau, Y.-L., Kambadur, M., and Weston, J.
(2022). Blenderbot 3: a deployed conversational agent
that continually learns to responsibly engage.
Siswanto, J., Andriani, M., Suakanto, S., Hardiyanti, M.,
and Kusumasari, T. F. (2022). Interview bot de-
velopment with natural language processing and ma-
chine learning. International Journal of Technology,
13(2):274–285.
Spradley, J. P. (2016). The Ethnographic Interview. Wave-
land Press, Inc., 1st edition edition.
Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-
to-end memory networks.
Tallyn, E., Clayton, J., Anderson, K., and Egglestone, P.
(2018). Ethnobot: A human-machine collaboration
for ethnographic data collection. In Proceedings of
the 2018 CHI Conference on Human Factors in Com-
puting Systems, page 672.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. pages 5998–6008.
Xiao, Y., Zheng, Y., and Wang, H. (2020). If i hear
you correctly: Designing interview chatbots with ac-
tive listening skills. International Journal of Human-
Computer Studies, 137:102384.
Yamanaka, T., Noguchi, H., Yato, S., and Komiya,
S. (2010). A proposal of a method to navi-
gate interview-driven software requirements elicita-
tion work. WSEAS Transactions on Information Sci-
ence and Applications, 7(6):784–798.
Interview Bot: Can Agentic LLM’s Perform Ethnographic Interviews?
709