
REFERENCES
Amini, S., Teymoorianfard, M., Ma, S., and Houmansadr,
A. (2024). Meansparse: Post-training robustness en-
hancement through mean-centered feature sparsifica-
tion. arXiv preprint arXiv:2406.05927.
Andriushchenko, M., Croce, F., Flammarion, N., and Hein,
M. (2019). Square attack: a query-efficient black-
box adversarial attack via random search. CoRR,
abs/1912.00049.
Bartoldson, B. R., Diffenderfer, J., Parasyris, K., and
Kailkhura, B. (2024). Adversarial robustness limits
via scaling-law and human-alignment studies. arXiv
preprint arXiv:2404.09349.
Bifis, A., Psarakis, E. Z., and Kosmopoulos, D. (2023). De-
veloping robust and lightweight adversarial defenders
by enforcing orthogonality on attack-agnostic denois-
ing autoencoders. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
1272–1281.
Carlini, N. and Wagner, D. (2017). Towards evaluating the
robustness of neural networks. In 2017 IEEE sympo-
sium on security and privacy (sp), pages 39–57.
Chen, Y.-Y., Chen, C.-T., Sang, C.-Y., Yang, Y.-C., and
Huang, S.-H. (2021). Adversarial attacks against rein-
forcement learning-based portfolio management strat-
egy. IEEE Access, 9:50667–50685.
Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti,
E., Flammarion, N., Chiang, M., Mittal, P., and Hein,
M. (2021). Robustbench: a standardized adversarial
robustness benchmark. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.
Croce, F. and Hein, M. (2019). Minimally distorted adver-
sarial examples with a fast adaptive boundary attack.
CoRR, abs/1907.02044.
Croce, F. and Hein, M. (2020). Reliable evaluation of
adversarial robustness with an ensemble of diverse
parameter-free attacks. CoRR, abs/2003.01690.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vi-
sion and pattern recognition, pages 248–255.
Deng, L. (2012). The mnist database of handwritten digit
images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–
142.
Dong, Y., Liao, F., Pang, T., Hu, X., and Zhu, J. (2017).
Discovering adversarial examples with momentum.
CoRR, abs/1710.06081.
Gao, L., Zhang, Q., Song, J., and Shen, H. T. (2020). Patch-
wise++ perturbation for adversarial targeted attacks.
CoRR, abs/2012.15503.
Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Ex-
plaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.
Kim, H. (2020). Torchattacks: A pytorch repository for
adversarial attacks. arXiv preprint arXiv:2010.01950.
Krizhevsky, A. and Hinton, G. (2009). Learning multiple
layers of features from tiny images.
Kumari, N., Singh, M., Sinha, A., Machiraju, H., Krishna-
murthy, B., and Balasubramanian, V. N. (2019). Har-
nessing the vulnerability of latent layers in adversar-
ially trained models. In Proceedings of the 28th In-
ternational Joint Conference on Artificial Intelligence,
pages 2779–2785.
Levi, M. and Kontorovich, A. (2024). Splitting the differ-
ence on adversarial training. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 3639–3656.
M ˛adry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. (2017). Towards deep learning models re-
sistant to adversarial attacks. stat, 1050(9).
Pang, T., Lin, M., Yang, X., Zhu, J., and Yan, S. (2022).
Robustness and accuracy could be reconcilable by
(proper) definition. In International Conference on
Machine Learning, pages 17258–17277.
Peng, S., Xu, W., Cornelius, C., Hull, M., Li, K., Dug-
gal, R., Phute, M., Martin, J., and Chau, D. H.
(2023). Robust principles: Architectural design prin-
ciples for adversarially robust cnns. arXiv preprint
arXiv:2308.16258.
Rade, R. and Moosavi-Dezfooli, S.-M. (2022). Reducing
excessive margin to achieve a better accuracy vs. ro-
bustness trade-off. In International Conference on
Learning Representations.
Schwinn, L., Raab, R., Nguyen, A., Zanca, D., and Eskofier,
B. M. (2021). Exploring misclassifications of robust
neural networks to enhance adversarial attacks. CoRR,
abs/2105.10304.
Selvakkumar, A., Pal, S., and Jadidi, Z. (2022). Addressing
adversarial machine learning attacks in smart health-
care perspectives. In Sensing Technology: Proceed-
ings of ICST 2022, pages 269–282. Springer.
Sitawarin, C., Chakraborty, S., and Wagner, D. (2021).
Sat: Improving adversarial training via curriculum-
based loss smoothing. In Proceedings of the 14th
ACM Workshop on Artificial Intelligence and Security,
pages 25–36.
Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. (2018). Robustness may be at odds with
accuracy. arXiv preprint arXiv:1805.12152.
Wang, X. and He, K. (2021). Enhancing the transferability
of adversarial attacks through variance tuning. CoRR,
abs/2103.15571.
Wu, H., Yunas, S., Rowlands, S., Ruan, W., and Wahlström,
J. (2023). Adversarial driving: Attacking end-to-end
autonomous driving. In 2023 IEEE Intelligent Vehi-
cles Symposium (IV), pages 1–7.
Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
mnist: a novel image dataset for benchmarking ma-
chine learning algorithms. CoRR, abs/1708.07747.
Zagoruyko, S. (2016). Wide residual networks. arXiv
preprint arXiv:1605.07146.
Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jor-
dan, M. (2019). Theoretically principled trade-off be-
tween robustness and accuracy. In International con-
ference on machine learning, pages 7472–7482.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
896