
imental results show that our method can accurately
reconstruct the per-pixel depths and surface normals
of various mirror surfaces. Our future work includes
extending the system to a polarized light source com-
bining a mirror and LCD and calibrating a catadiop-
tric system that handles polarization.
Limitations. The primary limitation of our method
is that the reconstructible area of the object is lim-
ited by the spatial range of the display’s illumination.
This issue could be mitigated by using multiple LCDs
or incorporating curved displays. Additionally, the
method assumes a metallic surface, which may re-
strict its applicability. This limitation could be ad-
dressed by extending the approach to handle dielectric
materials using Fresnel reflection.
ACKNOWLEDGEMENTS
This work was supported by JSPS KAKENHI Grant
Numbers JP20H00612 and JP22K17914.
REFERENCES
Atkinson, G. A. and Hancock, E. R. (2006). Recovery of
surface orientation from diffuse polarization. IEEE
TIP, 15(6):1653–1664.
Chari, V. and Sturm, P. (2013). A theory of refractive photo-
light-path triangulation. In CVPR, pages 1438–1445.
Collett, E. (2005). Field guide to polarization. Spie Belling-
ham.
Cui, Z., Gu, J., Shi, B., Tan, P., and Kautz, J. (2017). Polari-
metric multi-view stereo. In CVPR, pages 1558–1567.
Grossberg, M. D. and Nayar, S. K. (2005). The raxel imag-
ing model and ray-based calibration. IJCV, 61:119–
137.
Han, K., Liu, M., Schnieders, D., and Wong, K.-Y. K.
(2021). Fixed viewpoint mirror surface reconstruction
under an uncalibrated camera. IEEE TIP.
Han, Y., Guo, H., Fukai, K., Santo, H., Shi, B., Okura, F.,
Ma, Z., and Jia, Y. (2024). Nersp: Neural 3d recon-
struction for reflective objects with sparse polarized
images. In CVPR, pages 11821–11830.
Huynh, C. P., Robles-Kelly, A., and Hancock, E. (2010).
Shape and refractive index recovery from single-view
polarisation images. In CVPR, pages 1229–1236.
Ichikawa, T., Nobuhara, S., and Nishino, K. (2023). Spi-
ders: Structured polarization for invisible depth and
reflectance sensing. ArXiv, abs/2312.04553.
Ichikawa, T., Purri, M., Kawahara, R., Nobuhara, S., Dana,
K., and Nishino, K. (2021). Shape from sky: Polari-
metric normal recovery under the sky. In CVPR, pages
14832–14841.
Kawahara, R., Kuo, M.-Y. J., and Okabe, T. (2023). Po-
larimetric underwater stereo. In Scandinavian Con-
ference on Image Analysis, pages 534–550. Springer.
Kumar, R. K., Ilie, A., Frahm, J.-M., and Pollefeys, M.
(2008). Simple calibration of non-overlapping cam-
eras with a mirror. In CVPR, pages 1–7. IEEE.
Kutulakos, K. N. and Steger, E. (2008). A theory of refrac-
tive and specular 3d shape by light-path triangulation.
IJCV, 76:13–29.
Liu, M., Hartley, R., and Salzmann, M. (2013). Mirror sur-
face reconstruction from a single image. In CVPR.
Liu, M., Wong, K.-Y. K., Dai, Z., and Chen, Z. (2011).
Specular surface recovery from reflections of a pla-
nar pattern undergoing an unknown pure translation.
In ACCV, pages 137–147. Springer.
Lu, J., Ji, Y., Yu, J., and Ye, J. (2019). Mirror surface re-
construction using polarization field. In ICCP, pages
1–9.
Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss,
M., Debevec, P. E., et al. (2007). Rapid acquisi-
tion of specular and diffuse normal maps from polar-
ized spherical gradient illumination. Rendering Tech-
niques, 9(10):2.
Miyazaki, D., Shigetomi, T., Baba, M., Furukawa, R.,
Hiura, S., and Asada, N. (2012). Polarization-based
surface normal estimation of black specular objects
from multiple viewpoints. In 2012 Second Interna-
tional Conference on 3D Imaging, Modeling, Process-
ing, Visualization and Transmission, pages 104–111.
Miyazaki, D., Tan, R. T., Hara, K., and Ikeuchi, K. (2003).
Polarization-based inverse rendering from a single
view. In ICCV, pages 982–982.
Pistellato, M. and Bergamasco, F. (2024). The raxel
imaging model and ray-based calibration. IJCV,
132:4688—-4702.
Rodrigues, R., Barreto, J. P., and Nunes, U. (2010). Camera
pose estimation using images of planar mirror reflec-
tions. In Daniilidis, K., Maragos, P., and Paragios, N.,
editors, ECCV, pages 382–395, Berlin, Heidelberg.
Springer Berlin Heidelberg.
Smith, W. A., Ramamoorthi, R., and Tozza, S. (2016). Lin-
ear depth estimation from an uncalibrated, monoc-
ular polarisation image. In ECCV, pages 109–125.
Springer.
Sturm, P. and Barreto, J. P. (2008). General imaging geom-
etry for central catadioptric cameras. In ECCV, pages
609–622. Springer.
Sturm, P. and Bonfort, T. (2006). How to compute the
pose of an object without a direct view? In ACCV,
ACCV’06, page 21–31, Berlin, Heidelberg. Springer-
Verlag.
Takahashi, K., Nobuhara, S., and Matsuyama, T. (2012). A
new mirror-based extrinsic camera calibration using
an orthogonality constraint. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages
1051–1058. IEEE.
Zhao, J., Monno, Y., and Okutomi, M. (2020). Polarimetric
multi-view inverse rendering. In ECCV, pages 85–
102. Springer.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
796