Gong, N. Z., Talwalkar, A., Mackey, L., Huang, L., Shin, E.
C. R., Stefanov, E., Shi, E. R., and Song, D. (2014).
Joint link prediction and attribute inference using a
social-attribute network. ACM Transactions on
Intelligent Systems and Technology (TIST), 5(2):27.
Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014).
Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572.
Guha, S., Tang, K., and Francis, P. (2008). Noyb: Privacy
in online social networks. In Proceedings of the first
workshop on Online social networks, pages 49–54.
He, J., Chu, W. W., and Liu, Z. (2006). Inferring privacy
information from social networks. In International
Conference on Intelligence and Security Informatics,
pages 154–165. Springer.
Idan, L. and Feigenbaum, J. (2019). Show me your friends,
and i will tell you whom you vote for: Predicting
voting behavior in social networks. In Proceedings of
the 2019 IEEE/ACM international conference on
advances in social networks analysis and mining,
pages 816–824.
Irani, D., Webb, S., Li, K., and Pu, C. (2009). Large online
social footprints–an emerging threat. In 2009
International Conference on Computational Science
and Engineering, volume 3, pages 271–276. IEEE.
Janic, M., Wijbenga, J. P., and Veugen, T. (2013).
Transparency enhancing tools (tets): an overview. In
2013 Third Workshop on Socio-Technical Aspects in
Security and Trust, pages 18–25. IEEE.
Jia, J. and Gong, N. Z. (2018). Attriguard: A practical
defense against attribute inference attacks via
adversarial machine learning. In 27th {USENIX}
Security Symposium, pages 513–529.
Joo, J., Steen, F. F., and Zhu, S.-C. (2015). Automated
facial trait judgment and election outcome prediction:
Social dimensions of face. In Proceedings of the IEEE
international conference on computer vision, pages
3712–3720.
Joon Oh, S., Benenson, R., Fritz, M., and Schiele, B.
(2015). Person recognition in personal photo
collections. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3862–3870.
Jurgens, D. (2013). That’s what friends are for: Inferring
location in online social media platforms based on social
relationships. In Seventh International AAAI
Conference on Weblogs and Social Media.
Kaggle. Learning social circles in networks. https://
www.kaggle.com/c/learning-social-circles.
Kapritsos, M., Wang, Y., Quema, V., Clement, A., Alvisi,
L., and Dahlin, M. (2012). All about eve:{Execute-
Verify} replication for {Multi-Core} servers. In 10th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 237–250.
Knauth, T., Steiner, M., Chakrabarti, S., Lei, L., Xing,
C., and Vij, M. (2018). Integrating remote attestation
with transport layer security. arXiv preprint
arXiv:1801.05863.
Kosinski, M., Stillwell, D., and Graepel, T. (2013).
Private traits and attributes are predictable from digital
records of human behavior. Proceedings of the
National Academy of Sciences, 110(15):5802–5805.
Labitzke, S., Werling, F., Mittag, J., and Hartenstein, H.
(2013). Do online social network friends still threaten
my privacy? In Proceedings of the third ACM
conference on Data and application security and
privacy, pages 13–24. ACM.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. (1989). Back-
propagation applied to handwritten zip code
recognition. Neural computation, 1(4):541–551.
Li, M., Yang, Y., Chen, G., Yan, M., and Zhang, Y. (2024).
Sok: Understanding design choices and pitfalls of
trusted execution environments. In Proceedings of the
19th ACM Asia Conference on Computer and
Communications Security, pages 1600–1616.
Li, R., Wang, S., Deng, H., Wang, R., and Chang, K. C.-
C. (2012). Towards social user profiling: unified and
discriminative influence model for inferring home
locations. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1023–1031. ACM.
Luo, S., Morone, F., Sarraute, C., Travizano, M., and
Makse, H. A. (2017). Inferring personal economic
status from social network location. Nature
communications, 8:15227.
Maheshwari, S. (2019). Facebook advertising profiles are a
mystery to most users, survey says.
McPherson, R., Shokri, R., and Shmatikov, V. (2016).
Defeating image obfuscation with deep learning.
arXiv preprint arXiv:1609.00408.
Mislove, A., Viswanath, B., Gummadi, K. P., and Druschel,
P. (2010). You are who you know: inferring user
profiles in online social networks. In Proceedings of
the third ACM international conference on Web search
and data mining, pages 251–260. ACM.
Murmann, P. and Fischer-Hübner, S. (2017). Tools for
achieving usable ex post transparency: a survey. IEEE
Access, 5:22965–22991.
Nilsson, A., Bideh, P. N., and Brorsson, J. (2020). A
survey of published attacks on intel sgx. arXiv
preprint arXiv:2006.13598.
Oh, S. J., Benenson, R., Fritz, M., and Schiele, B. (2016).
Faceless person recognition: Privacy implications in
social media. In European Conference on Computer
Vision, pages 19–35. Springer.
Oh, S. J., Fritz, M., and Schiele, B. (2017). Adversarial
image perturbation for privacy protection a game
theory perspective. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 1491–
1500. IEEE.
Paju, A., Javed, M. O., Nurmi, J., Savima¨ki, J., McGillion,
B., and Brumley, B. B. (2023). Sok: A systematic
review of tee usage for developing trusted applications.
arXiv preprint arXiv:2306.15025.
Pontes, T., Magno, G., Vasconcelos, M., Gupta, A.,
Almeida, J., Kumaraguru, P., and Almeida, V. (2012).
Beware of what you share: Inferring home location in
social networks. In 2012 IEEE 12th International