
2024 IEEE 12th International Conference on Health-
care Informatics (ICHI), pages 490–492.
Dudjak, M. and Martinovi
´
c, G. (2020). An api-first method-
ology for designing a microservice-based backend as
a service platform. Information Technology and Con-
trol, 49(2):206–223.
Dudjak, M. and Martinovi
´
c, G. (2020). An api-first method-
ology for designing a microservice-based backend as
a service platform. Information technology and con-
trol, 49(2):206–223.
Jiang, J., Wang, F., Shen, J., Kim, S., and Kim, S. (2024). A
survey on large language models for code generation.
arXiv preprint arXiv:2406.00515.
Jorge, C. C., Tielman, M. L., and Jonker, C. M. (2022).
Artificial trust as a tool in human-ai teams. In 2022
17th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pages 1155–1157.
Kaswan, K. S., Dhatterwal, J. S., Malik, K., and Baliyan,
A. (2023). Generative ai: A review on models and ap-
plications. In 2023 International Conference on Com-
munication, Security and Artificial Intelligence (ICC-
SAI), pages 699–704.
Kim, S., Moon, S., Tabrizi, R., Lee, N., Mahoney, M. W.,
Keutzer, K., and Gholami, A. (2024). An llm compiler
for parallel function calling.
Lazar, K., Vetzler, M., Uziel, G., Boaz, D., Goldbraich, E.,
Amid, D., and Anaby-Tavor, A. (2024). Specrawler:
Generating openapi specifications from api documen-
tation using large language models.
Lercher, A. (2024). Managing api evolution in microser-
vice architecture. In 2024 IEEE/ACM 46th Interna-
tional Conference on Software Engineering: Compan-
ion Proceedings (ICSE-Companion), pages 195–197.
Liu, J., Xia, C. S., Wang, Y., and Zhang, L. (2023). Is
your code generated by chatgpt really correct? rig-
orous evaluation of large language models for code
generation.
Nguyen, N. and Nadi, S. (2022). An empirical evaluation of
github copilot’s code suggestions. In Proceedings of
the 19th International Conference on Mining Software
Repositories, pages 1–5.
Olson, L. (2024). Custom developer gpt for ethical ai solu-
tions. In 2024 IEEE/ACM 3rd International Confer-
ence on AI Engineering – Software Engineering for AI
(CAIN), pages 282–283.
Ponelat, J. S. and Rosenstock, L. L. (2022). Designing APIs
with Swagger and OpenAPI. Simon and Schuster.
Rasheed, Z., Sami, M. A., Kemell, K.-K., Waseem, M.,
Saari, M., Syst
¨
a, K., and Abrahamsson, P. (2024a).
Codepori: Large-scale system for autonomous soft-
ware development using multi-agent technology.
Rasheed, Z., Sami, M. A., Rasku, J., Kemell, K.-K., Zhang,
Z., Harjamaki, J., Siddeeq, S., Lahti, S., Herda, T.,
Nurminen, M., et al. (2024b). Timeless: A vision for
the next generation of software development. arXiv
preprint arXiv:2411.08507.
Rasheed, Z., Sami, M. A., Waseem, M., Kemell, K.-K.,
Wang, X., Nguyen, A., Syst
¨
a, K., and Abrahamsson,
P. (2024c). Ai-powered code review with llms: Early
results. arXiv preprint arXiv:2404.18496.
Rasheed, Z., Waseem, M., Ahmad, A., Kemell, K.-K., Xi-
aofeng, W., Duc, A. N., and Abrahamsson, P. (2024d).
Can large language models serve as data analysts?
a multi-agent assisted approach for qualitative data
analysis. arXiv preprint arXiv:2402.01386.
Rasheed, Z., Waseem, M., Kemell, K. K., Ahmad, A.,
Sami, M. A., Rasku, J., Syst
¨
a, K., and Abrahams-
son, P. (2025). Large language models for code gen-
eration: The practitioners perspective. arXiv preprint
arXiv:2501.16998.
Rasheed, Z., Waseem, M., Kemell, K.-K., Xiaofeng, W.,
Duc, A. N., Syst
¨
a, K., and Abrahamsson, P. (2023).
Autonomous agents in software development: A vi-
sion paper. arXiv preprint arXiv:2311.18440.
Rivero, J. M., Heil, S., Grigera, J., Gaedke, M., and Rossi,
G. (2013). Mockapi: An agile approach support-
ing api-first web application development. In Daniel,
F., Dolog, P., and Li, Q., editors, Web Engineering.
Springer Berlin Heidelberg.
Romani, Y., Tibermacine, O., and Tibermacine, C.
(2022). Towards migrating legacy software systems to
microservice-based architectures: a data-centric pro-
cess for microservice identification. In 2022 IEEE
19th International Conference on Software Architec-
ture Companion (ICSA-C), pages 15–19.
Sallam, M. (2023). Chatgpt utility in healthcare educa-
tion, research, and practice: systematic review on the
promising perspectives and valid concerns. In Health-
care, volume 11, page 887. MDPI.
Saxena, D. and Bhowmik, B. (2023). Paradigm shift from
monolithic to microservices. In 2023 IEEE Interna-
tional Conference on Recent Advances in Systems Sci-
ence and Engineering (RASSE), pages 1–7.
Wang, J., Cao, L., Luo, X., Zhou, Z., Xie, J., Jatowt, A.,
and Cai, Y. (2023). Enhancing large language models
for secure code generation: A dataset-driven study on
vulnerability mitigation.
Wang, J., Yang, Q., and Chen, Y. (2024). A large lan-
guage model–based approach for automatically opti-
mizing bim. In 2024 43rd Chinese Control Confer-
ence (CCC), pages 8518–8523.
Zhang, B., Liang, P., Zhou, X., Ahmad, A., and Waseem, M.
(2023). Practices and challenges of using github copi-
lot: An empirical study. In Proceedings of the 35th In-
ternational Conference on Software Engineering and
Knowledge Engineering, volume 2023 of SEKE2023,
page 124–129. KSI Research Inc.
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang,
C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang,
X., Liu, Z., Liu, P., Nie, J.-Y., and Wen, J.-R. (2024).
A survey of large language models.
Zimmermann, D. and Koziolek, A. (2023). Gui-based soft-
ware testing: An automated approach using gpt-4 and
selenium webdriver. In 2023 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing Workshops (ASEW), pages 171–174.
LLM-Generated Microservice Implementations from RESTful API Definitions
173