
Antoniou, G., Billington, D., Governatori, G., Maher, M. J.,
and Rock, A. (2000). A family of defeasible reasoning
logics and its implementation. In Proceedings of the
14th European Conference on Artificial Intelligence,
ECAI’00, page 459–463, NLD. IOS Press.
Bouyarmane, K., Chappellet, K., Vaillant, J., and Khed-
dar, A. (2018). Quadratic programming for multirobot
and task-space force control. IEEE Transactions on
Robotics, 35(1):64–77.
Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen,
X., Choromanski, K., Ding, T., Driess, D., Dubey,
A., Finn, C., Florence, P., Fu, C., Arenas, M. G.,
Gopalakrishnan, K., Han, K., Hausman, K., Herzog,
A., Hsu, J., Ichter, B., Irpan, A., Joshi, N., Julian, R.,
Kalashnikov, D., Kuang, Y., Leal, I., Lee, L., Lee, T.-
W. E., Levine, S., Lu, Y., Michalewski, H., Mordatch,
I., Pertsch, K., Rao, K., Reymann, K., Ryoo, M.,
Salazar, G., Sanketi, P., Sermanet, P., Singh, J., Singh,
A., Soricut, R., Tran, H., Vanhoucke, V., Vuong, Q.,
Wahid, A., Welker, S., Wohlhart, P., Wu, J., Xia, F.,
Xiao, T., Xu, P., Xu, S., Yu, T., and Zitkovich, B.
(2023). Rt-2: Vision-language-action models transfer
web knowledge to robotic control. In arXiv preprint
arXiv:2307.15818.
Chaumette, F. and Hutchinson, S. (2006). Visual servo con-
trol. i. basic approaches. IEEE Robotics & Automation
Magazine, 13(4):82–90.
Corke, P. and Haviland, J. (2021). Not your grandmother’s
toolbox–the robotics toolbox reinvented for python. In
2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 11357–11363. IEEE.
De Giorgis, S., Pomarlan, M., and Tsiogkas, N. (2024).
ISD8 Tutorial Report: Cognitively Inspired Reason-
ing for Reactive Robotics-From Image Schemas to
Knowledge Enrichment.
Dong, C., Takizawa, M., Kudoh, S., and Suehiro, T. (2019).
Precision pouring into unknown containers by ser-
vice robots. In 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
5875–5882.
Escande, A., Mansard, N., and Wieber, P.-B. (2014). Hierar-
chical quadratic programming: Fast online humanoid-
robot motion generation. The International Journal of
Robotics Research, 33(7):1006–1028.
Ferretti, E., Errecalde, M., Garcia, A., and Simari, G.
(2007). An application of defeasible logic program-
ming to decision making in a robotic environment.
In Logic Programming and Nonmonotonic Reasoning
(LPNMR), pages 297–302.
Gibson, J. J. (1977). The theory of affordances. In Robert
E Shaw, J. B., editor, Perceiving, acting, and know-
ing: toward an ecological psychology, pages pp.67–
82. Hillsdale, N.J. : Lawrence Erlbaum Associates.
Guo, H., Wu, F., Qin, Y., Li, R., Li, K., and Li, K.
(2023). Recent trends in task and motion planning
for robotics: A survey. ACM Comput. Surv., 55(13s).
Johnson, M. (1987). The body in the mind: The bodily basis
of meaning, imagination, and reason. The body in the
mind: The bodily basis of meaning, imagination, and
reason. University of Chicago Press, Chicago, IL, US.
Kansky, K., Silver, T., M
´
ely, D. A., Eldawy, M., L
´
azaro-
Gredilla, M., Lou, X., Dorfman, N., Sidor, S.,
Phoenix, S., and George, D. (2017). Schema net-
works: Zero-shot transfer with a generative causal
model of intuitive physics.
Kress-Gazit, H., Wongpiromsarn, T., and Topcu, U. (2011).
Correct, reactive, high-level robot control. Robotics &
Automation Magazine, IEEE, 18:65 – 74.
Lam, H.-P. and Governatori, G. (2013). Towards a model
of uavs navigation in urban canyon through defeasible
logic. J. Log. and Comput., 23(2):373–395.
Lindemann, L. and Dimarogonas, D. V. (2019). Control
barrier functions for signal temporal logic tasks. IEEE
Control Systems Letters, 3(1):96–101.
Mandler, J. M. (1992). How to build a baby: Ii. conceptual
primitives. Psychological review, 99(4):587.
Mansard, N., Stasse, O., Evrard, P., and Kheddar, A. (2009).
A versatile generalized inverted kinematics imple-
mentation for collaborative working humanoid robots:
The stack of tasks. In International Conference on Ad-
vanced Robotics (ICAR), page 119.
Meli, D., Nakawala, H., and Fiorini, P. (2023). Logic pro-
gramming for deliberative robotic task planning. Ar-
tificial Intelligence Review, 56.
Muhayyuddin, Akbari, A., and Rosell, J. (2017). Physics-
based motion planning with temporal logic specifica-
tions. IFAC-PapersOnLine, 50(1):8993–8999. 20th
IFAC World Congress.
Pan, Z., Park, C., and Manocha, D. (2016). Robot motion
planning for pouring liquids. Proceedings of the In-
ternational Conference on Automated Planning and
Scheduling, 26(1):518–526.
Piacenza, P., Lee, D., and Isler, V. (2022). Pouring by feel:
An analysis of tactile and proprioceptive sensing for
accurate pouring. In 2022 International Conference
on Robotics and Automation (ICRA), pages 10248–
10254.
Pomarlan, M., De Giorgis, S., Ringe, R., Hedblom, M. M.,
and Tsiogkas, N. (2024). Hanging around : Cogni-
tive inspired reasoning for reactive robotics. In Formal
Ontology in Information Systems : Proceedings of the
14th International Conference (FOIS 2024), number
394 in Frontiers in Artificial Intelligence and Applica-
tions, pages 2–15.
Schenck, C. and Fox, D. (2017). Visual closed-loop control
for pouring liquids. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pages
2629–2636.
Shanahan, M. and Witkowski, M. (2001). High-level
robot control through logic. In Castelfranchi, C. and
Lesp
´
erance, Y., editors, Intelligent Agents VII Agent
Theories Architectures and Languages, pages 104–
121, Berlin, Heidelberg. Springer Berlin Heidelberg.
Stelter, S., Bartels, G., and Beetz, M. (2022a). An open-
source motion planning framework for mobile manip-
ulators using constraint-based task space control with
linear mpc. In 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
1671–1678. IEEE.
IAI 2025 - Special Session on Interpretable Artificial Intelligence Through Glass-Box Models
896