
Dave, D., DeSalvo, D. J., Haridas, B., McKay, S., Shenoy,
A., Koh, C. J., Lawley, M., & Erraguntla, M. (2021).
Feature-based machine learning model for real-time
hypoglycemia prediction. Journal of Diabetes Science
and Technology, 15(4), 842-855.
Della Cioppa, A., De Falco, I., Koutny, T., Scafuri, U., Ubl,
M., & Tarantino, E. (2023). Reducing high-risk glucose
forecasting errors by evolving interpretable models for
type 1 diabetes. Applied soft computing, 134, 110012.
Erdős, B., van Sloun, B., Goossens, G. H., O’Donovan, S.
D., de Galan, B. E., van Greevenbroek, M. M.,
Stehouwer, C. D., Schram, M. T., Blaak, E. E., &
Adriaens, M. E. (2023). Quantifying postprandial
glucose responses using a hybrid modeling approach:
Combining mechanistic and data-driven models in The
Maastricht Study. PLoS ONE, 18(7), e0285820.
Georga, E. I., Protopappas, V. C., Ardigo, D., Marina, M.,
Zavaroni, I., Polyzos, D., & Fotiadis, D. I. (2012).
Multivariate prediction of subcutaneous glucose
concentration in type 1 diabetes patients based on
support vector regression. IEEE Journal of Biomedical
and Health Informatics, 17(1), 71-81.
Ghimire, S., Celik, T., Gerdes, M., & Omlin, C. W. (2024).
Deep learning for blood glucose level prediction: How
well do models generalize across different data sets?
PLoS ONE, 19(9), e0310801.
Lehmann, E., & Deutsch, T. (1992). A physiological model
of glucose-insulin interaction in type 1 diabetes
mellitus. Journal of biomedical engineering, 14(3),
235-242.
Marling, C., & Bunescu, R. (2020). The OhioT1DM dataset
for blood glucose level prediction: Update 2020. CEUR
workshop proceedings,
Mougiakakou, S. G., Prountzou, A., Iliopoulou, D., Nikita,
K. S., Vazeou, A., & Bartsocas, C. S. (2006). Neural
network based glucose-insulin metabolism models for
children with type 1 diabetes. 2006 International
Conference of the IEEE Engineering in Medicine and
Biology Society,
Oviedo, S., Vehí, J., Calm, R., & Armengol, J. (2017). A
review of personalized blood glucose prediction
strategies for T1DM patients. International journal for
numerical methods in biomedical engineering, 33(6),
e2833.
Pawar, S., San, O., Aksoylu, B., Rasheed, A., & Kvamsdal,
T. (2021). Physics guided machine learning using
simplified theories. Physics of Fluids, 33(1).
Semmlow, J. (2012). Autocorrelation Function. Retrieved
October from
https://www.sciencedirect.com/topics/engineering/auto
correlation-function
Sun, X., Rashid, M. M., Sevil, M., Hobbs, N., Brandt, R.,
Askari, M.-R., Shahidehpour, A., & Cinar, A. (2020).
Prediction of Blood Glucose Levels for People with
Type 1 Diabetes using Latent-Variable-based Model.
KDH@ ECAI, 20, 115-119.
Tong, H. (2023). Functional linear regression with Huber
loss. Journal of Complexity, 74, 101696.
Woldaregay, A. Z., Årsand, E., Walderhaug, S., Albers, D.,
Mamykina, L., Botsis, T., & Hartvigsen, G. (2019).
Data-driven modeling and prediction of blood glucose
dynamics: Machine learning applications in type 1
diabetes. Artificial intelligence in medicine, 98, 109-
134.
Zhu, T., Li, K., Herrero, P., & Georgiou, P. (2022).
Personalized blood glucose prediction for type 1
diabetes using evidential deep learning and meta-
learning. IEEE Transactions on Biomedical
Engineering, 70(1), 193-204.
HEALTHINF 2025 - 18th International Conference on Health Informatics
990