
Du, Y., Huang, T., You, S., Hsieh, M.-H., and Tao, D.
(2022). Quantum circuit architecture search for varia-
tional quantum algorithms. npj Quantum Information,
8(1):62.
Emmanoulopoulos, D. and Dimoska, S. (2022). Quantum
machine learning in finance: Time series forecasting.
arXiv preprint arXiv:2202.00599.
Grover, L. K. (1996). A fast quantum mechanical algorithm
for database search. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of comput-
ing, pages 212–219.
Hamilton, J. D. (2020). Time series analysis. Princeton
university press.
Hyndman, R. (2018). Forecasting: principles and practice.
OTexts.
Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.-H., and Choo,
J. (2021). Reversible instance normalization for accu-
rate time-series forecasting against distribution shift.
In International Conference on Learning Representa-
tions.
Kingma, D. P. and Ba, J. (2017). Adam: A method for
stochastic optimization.
Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X.,
and Yan, X. (2019). Enhancing the locality and break-
ing the memory bottleneck of transformer on time se-
ries forecasting. Advances in neural information pro-
cessing systems, 32.
Lidar, D. A. and Brun, T. A. (2013). Quantum error correc-
tion. Cambridge university press.
Lim, B. and Zohren, S. (2021). Time-series forecasting with
deep learning: a survey. Philosophical Transactions of
the Royal Society A, 379(2194):20200209.
Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X.,
and Dustdar, S. (2022). Pyraformer: Low-complexity
pyramidal attention for long-range time series model-
ing and forecasting. In International Conference on
Learning Representations.
McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush,
R., and Neven, H. (2018). Barren plateaus in quantum
neural network training landscapes. Nature communi-
cations, 9(1):4812.
Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J.
(2023). A time series is worth 64 words: Long-term
forecasting with transformers. In The Eleventh Inter-
national Conference on Learning Representations.
Nielsen, M. A. and Chuang, I. L. (2010). Quantum compu-
tation and quantum information. Cambridge univer-
sity press.
Preskill, J. (2018). Quantum computing in the nisq era and
beyond. Quantum, 2:79.
Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T.
(2020). Deepar: Probabilistic forecasting with autore-
gressive recurrent networks. International journal of
forecasting, 36(3):1181–1191.
Schuld, M. and Petruccione, F. (2021). Machine learning
with quantum computers, volume 676. Springer.
Shor, P. (1994). Algorithms for quantum computation: dis-
crete logarithms and factoring. In Proceedings 35th
Annual Symposium on Foundations of Computer Sci-
ence, pages 124–134.
Simeone, O. (2022). An introduction to quantum machine
learning for engineers. Found. Trends Signal Process.,
16(1–2):1–223.
Vaswani, A. (2017). Attention is all you need. Advances in
Neural Information Processing Systems. Neural infor-
mation processing systems foundation, page 5999.
Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J.,
and Sun, L. (2023). Transformers in time series: a
survey. In Proceedings of the Thirty-Second Inter-
national Joint Conference on Artificial Intelligence,
pages 6778–6786.
Wu, H., Xu, J., Wang, J., and Long, M. (2021). Autoformer:
Decomposition transformers with auto-correlation for
long-term series forecasting. Advances in neural in-
formation processing systems, 34:22419–22430.
You, J.-B., Koh, D. E., Kong, J. F., Ding, W.-J., Png,
C. E., and Wu, L. (2021). Exploring variational quan-
tum eigensolver ansatzes for the long-range xy model.
arXiv preprint arXiv:2109.00288.
Zeng, A., Chen, M., Zhang, L., and Xu, Q. (2023). Are
transformers effective for time series forecasting? In
Proceedings of the AAAI conference on artificial intel-
ligence, volume 37, pages 11121–11128.
Zhang, Y., Ma, L., Pal, S., Zhang, Y., and Coates, M.
(2024). Multi-resolution time-series transformer for
long-term forecasting. In International Conference
on Artificial Intelligence and Statistics, pages 4222–
4230. PMLR.
Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. (2021). Informer: Beyond efficient
transformer for long sequence time-series forecasting.
In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 11106–11115.
Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin,
R. (2022). Fedformer: Frequency enhanced decom-
posed transformer for long-term series forecasting. In
International conference on machine learning, pages
27268–27286. PMLR.
QuLTSF: Long-Term Time Series Forecasting with Quantum Machine Learning
829