
Bucher, D., N
¨
ußlein, J., O’Meara, C., Angelov, I., Wimmer,
B., Ghosh, K., Cortiana, G., and Linnhoff-Popien,
C. (2023). Dynamic price incentivization for car-
bon emission reduction using quantum optimization.
arXiv preprint arXiv:2309.05502.
Eblen, J. D., Phillips, C. A., Rogers, G. L., and Langston,
M. A. (2011). The maximum clique enumeration
problem: Algorithms, applications and implementa-
tions. In International Symposium on Bioinformatics
Research and Applications, pages 306–319. Springer.
Farhi, E., Goldstone, J., and Gutmann, S. (2014). A
quantum approximate optimization algorithm. arXiv
preprint arXiv:1411.4028.
Farhi, E. and Harrow, A. W. (2016). Quantum supremacy
through the quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1602.07674.
Glover, F., Kochenberger, G., and Du, Y. (2018). A tutorial
on formulating and using qubo models. arXiv preprint
arXiv:1811.11538.
Herrman, R., Treffert, L., Ostrowski, J., Lotshaw, P. C.,
Humble, T. S., and Siopsis, G. (2021). Impact of graph
structures for qaoa on maxcut. Quantum Information
Processing, 20(9):289.
Kawarabayashi, K.-i. (2001). A survey on hamiltonian cy-
cles. Interdisciplinary Information Sciences, 7(1):25–
39.
Laporte, G. and Mart
´
ın, I. R. (2007). Locating a cycle in a
transportation or a telecommunications network. Net-
works: An International Journal, 50(1):92–108.
Lee, X., Saito, Y., Cai, D., and Asai, N. (2021). Parameters
fixing strategy for quantum approximate optimization
algorithm. In 2021 IEEE international conference
on quantum computing and engineering (QCE), pages
10–16. IEEE.
Lodewijks, B. (2020). Mapping NP-hard and NP-complete
optimisation problems to quadratic unconstrained bi-
nary optimisation problems.
Lu, X. On np-intermediate, isomorphism problems, and
polynomial hierarchy.
Lucas, A. (2014). Ising formulations of many np problems.
Frontiers in physics, 2:5.
Majumdar, R., Bhoumik, D., Madan, D., Vinayagamurthy,
D., Raghunathan, S., and Sur-Kolay, S. (2021). Depth
optimized ansatz circuit in qaoa for max-cut. arXiv
preprint arXiv:2110.04637.
Mooney, G., Tonetto, S., Hill, C., and Hollenberg, L.
(2019). Mapping NP-hard problems to restructed adi-
abatic quantum architectures.
Morita, S. and Nishimori, H. (2008). Mathematical founda-
tion of quantum annealing. Journal of Mathematical
Physics, 49(12).
Ni, X.-H., Cai, B.-B., Liu, H.-L., Qin, S.-J., Gao, F., and
Wen, Q.-Y. (2023). More efficient parameter initial-
ization strategy in qaoa for maxcut. arXiv preprint
arXiv:2306.06986.
Niu, M. Y., Lu, S., and Chuang, I. L. (2019). Optimizing
qaoa: Success probability and runtime dependence on
circuit depth. arXiv preprint arXiv:1905.12134.
N
¨
ußlein, J., Gabor, T., Linnhoff-Popien, C., and Feld, S.
(2022). Algorithmic qubo formulations for k-sat and
hamiltonian cycles. In Proceedings of the genetic
and evolutionary computation conference companion,
pages 2240–2246.
N
¨
ußlein, J., Roch, C., Gabor, T., Stein, J., Linnhoff-Popien,
C., and Feld, S. (2023). Black box optimization using
qubo and the cross entropy method. In International
Conference on Computational Science, pages 48–55.
Springer.
Pan, Y., Tong, Y., Xue, S., and Zhang, G. (2022a). Efficient
depth selection for the implementation of noisy quan-
tum approximate optimization algorithm. Journal of
the Franklin Institute, 359(18):11273–11287.
Pan, Y., Tong, Y., and Yang, Y. (2022b). Automatic depth
optimization for a quantum approximate optimization
algorithm. Physical Review A, 105(3):032433.
Ponce, M., Herrman, R., Lotshaw, P. C., Powers, S., Siop-
sis, G., Humble, T., and Ostrowski, J. (2023). Graph
decomposition techniques for solving combinatorial
optimization problems with variational quantum algo-
rithms. arXiv preprint arXiv:2306.00494.
Prasanna, D., Patton, R., Schuman, C., and Potok, T. (2019).
Efficiently embedding QUBO problems on adiabatic
quantum computers.
Roch, C., Ratke, D., N
¨
ußlein, J., Gabor, T., and Feld, S.
(2023). The effect of penalty factors of constrained
hamiltonians on the eigenspectrum in quantum an-
nealing. ACM Transactions on Quantum Computing,
4(2):1–18.
Rossi, R. A., Gleich, D. F., and Gebremedhin, A. H. (2015).
Parallel maximum clique algorithms with applications
to network analysis. SIAM Journal on Scientific Com-
puting, 37(5):C589–C616.
Sax, I., Feld, S., Zielinski, S., Gabor, T., Linnhoff-Popien,
C., and Mauerer, W. (2020). Approximate approxima-
tion on a quantum annealer. In Proceedings of the 17th
ACM International Conference on Computing Fron-
tiers, pages 108–117.
Shaydulin, R. and Galda, A. (2021). Error mitigation
for deep quantum optimization circuits by leverag-
ing problem symmetries. In 2021 IEEE International
Conference on Quantum Computing and Engineering
(QCE), pages 291–300. IEEE.
Shaydulin, R., Hadfield, S., Hogg, T., and Safro, I.
(2020). Classical symmetries and qaoa. arXiv preprint
arXiv:2012.04713.
Shaydulin, R. and Wild, S. M. (2021). Exploiting symmetry
reduces the cost of training qaoa. IEEE Transactions
on Quantum Engineering, 2:1–9.
Zielinski, S., N
¨
ußlein, J., Stein, J., Gabor, T., Linnhoff-
Popien, C., and Feld, S. (2023a). Influence of differ-
ent 3sat-to-qubo transformations on the solution qual-
ity of quantum annealing: A benchmark study. In
Proceedings of the Companion Conference on Genetic
and Evolutionary Computation, pages 2263–2271.
Zielinski, S., N
¨
ußlein, J., Stein, J., Gabor, T., Linnhoff-
Popien, C., and Feld, S. (2023b). Pattern qubos: Algo-
rithmic construction of 3sat-to-qubo transformations.
Electronics, 12(16):3492.
Zou, P. (2023). Multiscale quantum approximate optimiza-
tion algorithm. arXiv preprint arXiv:2312.06181.
QAIO 2025 - Workshop on Quantum Artificial Intelligence and Optimization 2025
792