REFERENCES
Amin, M. R., Wickramasuriya, D., & Faghih, R. T. (2022).
A Wearable Exam Stress Dataset for Predicting
Cognitive Performance in Real-World Settings
[Dataset]. PhysioNe. https://doi.org/https://doi.org/
10.13026/kvkb-aj90
Attila, R. (2012). PAMAP2 Physical Activity Monitoring
[Dataset]. UCI Machine Learning Repository.
https://doi.org/https://doi.org/10.24432/C5NW2H.
Badawi, A. A., Al-Kabbany, A., & Shaban, H. (2019).
Multimodal Human Activity Recognition from
Wearable Inertial Sensors Using Machine Learning.
402–407. https://doi.org/10.1109/iecbes.2018.8626737
Banos, O., Garcia, R., Holgado-Terriza, J. A., Damas, M.,
Pomares, H., Rojas, I., Saez, A., & Villalonga, C.
(2014). mHealthDroid: A Novel Framework for Agile
Development of Mobile Health Applications.
Bhogal, A. S., & Mani, A. R. (2017). Pattern analysis of
oxygen saturation variability in healthy individuals:
Entropy of pulse oximetry signals carries information
about mean oxygen saturation. Frontiers in Physiology,
8(AUG). https://doi.org/10.3389/fphys.2017.00555
Biswas, N., & Ashili, S. (2023). Smartwatch heart rate
data. IEEE Dataport. https://doi.org/https://dx.doi.org/
10.21227/y4ek-d516
Cheng, L., Guan, Y., Zhu, K., & Li, Y. (2017). Recognition
of Human Activities using Machine Learning Methods
with Wearable Sensors. IEEE.
Cheng, S. T. (2017). Dementia Caregiver Burden: a
Research Update and Critical Analysis. In Current
Psychiatry Reports (Vol. 19, Issue 9). Current Medicine
Group LLC 1. https://doi.org/10.1007/s11920-017-
0818-2
Cote, A. C., Phelps, R. J., Kabiri, N. S., Bhangu, J. S., &
Thomas, K. (2021). Evaluation of Wearable
Technology in Dementia: A Systematic Review and
Meta-Analysis. In Frontiers in Medicine (Vol. 7).
Frontiers Media S.A. https://doi.org/10.3389/
fmed.2020.501104
Cullen, A., Mazhar, M. K. A., Smith, M. D., Lithander, F.
E., Breasail, M., & Henderson, E. J. (2022). Wearable
and Portable GPS Solutions for Monitoring Mobility in
Dementia: A Systematic Review. Sensors, 22(9).
https://doi.org/10.3390/s22093336
Erdaş, Ç. B., & Güney, S. (2021). Human Activity
Recognition by Using Different Deep Learning
Approaches for Wearable Sensors. In Neural
Processing Letters (Vol. 53, Issue 3, pp. 1795–1809).
Springer. https://doi.org/10.1007/s11063-021-10448-3
Fuller, D. (2020). Replication Data for: Using machine
learning methods to predict physical activity types with
Apple Watch and Fitbit data using indirect calorimetry
as the criterion. Harvard Dataverse.
https://doi.org/https://doi.org/10.7910/DVN/ZS2Z2J
Gayathri, K. S., Elias, S., & Ravindran, B. (2015).
Hierarchical activity recognition for dementia care
using Markov Logic Network. Personal and
Ubiquitous Computing, 19(2), 271–285.
https://doi.org/10.1007/s00779-014-0827-7
Ge, R. (2023). XGBoost-Based Human Activity
Recognition Algorithm using Wearable Smart Devices.
Applied and Computational Engineering, 2(1), 352–
358. https://doi.org/10.54254/2755-2721/2/20220514
Godfrey, A., Brodie, M., van Schooten, K. S.,
Nouredanesh, M., Stuart, S., & Robinson, L. (2019).
Inertial wearables as pragmatic tools in dementia. In
Maturitas (Vol. 127, pp. 12–17). Elsevier Ireland Ltd.
https://doi.org/10.1016/j.maturitas.2019.05.010
Godzwon, I. (2024). FitBit Heart Rate [Dataset]. OpenML.
https://www.openml.org/search?type=data&status=act
ive&id=46103&sort=runs
Grimaldi, E., Vigneri, D., Di Poce, G., & Grieco, N. (2023).
Falls vs Normal Activities [Dataset]. Kaggle.
https://www.kaggle.com/datasets/enricogrimaldi/falls-
vs-normal-activities
Guy, E. F. S., Isaac, F., Jaimey Anne, C., Trudy, C. der K.,
Rongqing, C., Jennifer, K., Knut, M., & James
Geoffrey, C. (2024). Respiratory and heart rate
monitoring dataset from aeration study [Dataset]].
PhysioNet. https://doi.org/https://doi.org/10.13026/
e4dt-f689
Hoover, A. (2020). Clemson All-day Dataset (CAD)
[Dataset]. Clemson University. https://cecas.
clemson.edu/~ahoover/allday/
Husebo, B. S., Heintz, H. L., Berge, L. I., Owoyemi, P.,
Rahman, A. T., & Vahia, I. V. (2020). Sensing
technology to facilitate behavioral and psychological
symptoms and to monitor treatment response in people
with dementia: A systematic review. In Frontiers in
Pharmacology (Vol. 10). Frontiers Media S.A.
https://doi.org/10.3389/fphar.2019.01699
Ihlen, E. A. F., Weiss, A., Helbostad, J. L., & Hausdorff, J.
M. (2015). The Discriminant Value of Phase-
Dependent Local Dynamic Stability of Daily Life
Walking in Older Adult Community-Dwelling Fallers
and Nonfallers. BioMed Research International, 2015,
1–11. https://doi.org/10.1155/2015/402596
Jafarnejad, S. (2018). An Open Dataset for Human Activity
Analysis [Dataset]. Kaggle. https://www.kaggle.com/
datasets/sasanj/human-activity-smart-devices
Jager, F., Taddei, A., Moody, G. B., Emdin, M., Antolic,
G., Dorn, R., Smrdl, A., Marchesi, C., & Mark, R. G.
(2003). Long Term ST Database . PhysioNet.
Jarchi, D., & Casson, A. J. (2017). Description of a database
containing wrist PPG signals recorded during physical
exercise with both accelerometer and gyroscope
measures of motion. Data, 2(1). https://doi.org/
10.3390/data2010001
Julian, V., Alexander, B., Lucas, P., Catharina, van A.,
Michael, F., & Tobias, W. (2024). PADS - Parkinsons
Disease Smartwatch dataset. PhysioNet.
Karas, M., Urbanek, J., Crainiceanu, C., Harezlak, J., &
Fadel, W. (2021). Labeled raw accelerometry data
captured during walking, stair climbing and driving
[Dataset]. PhysioNet. https://doi.org/10.13026/51h0-
a262
Khan, I. U., Afzal, S., & Lee, J. W. (2022). Human activity
recognition via hybrid deep learning based model.
Sensors, 22(1). https://doi.org/10.3390/s22010323