
D., Weintraub, S., Jicha, G., Carlsson, C., Burns, J.,
Quinn, J., Sweet, R. A., Rascovsky, K., Teylan, M.,
Beekly, D., Thomas, G., Bollenbeck, M., Monsell, S.,
Mock, C., Zhou, X. H., Thomas, N., Robichaud, E.,
Dean, M., Hubbard, J., Jacka, M., Schwabe-Fry, K.,
Wu, J., Phelps, C., and Morris, J. C. (2018). Version
3 of the National Alzheimer’s Coordinating Center’s
uniform data set. Alzheimer Disease & Associated
Disorders, 32(4):351–358.
Better, M. A. (2023). Alzheimer’s disease facts and figures.
Alzheimers Dement, 19(4):1598–1695.
Cummings, J. L. (1997). The neuropsychiatric inventory:
assessing psychopathology in dementia patients. Neu-
rology, 48(5 suppl 6):10S–16S.
Cuturi, M. and Blondel, M. (2017). Soft-DTW: a differen-
tiable loss function for time-series. In International
Conference on Machine Learning, pages 894–903.
PMLR.
De la Cruz-Mes
´
ıa, R., Quintana, F. A., and Marshall, G.
(2008). Model-based clustering for longitudinal data.
Computational Statistics & Data Analysis, 52(3):1441–
1457.
Escudero, J., Zajicek, J. P., and Ifeachor, E. (2011). Early
detection and characterization of alzheimer’s disease
in clinical scenarios using bioprofile concepts and k-
means. In 2011 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society,
pages 6470–6473. IEEE.
Feng, Z., Niu, Z., Huang, J., Tang, W., and Wu, Q. (2018). A
novel load clustering method based on entropy features
considering longitudinal characteristics. In Proceed-
ings of PESGM 2018 – the 2018 IEEE Power & Energy
Society General Meeting, pages 1–5.
Figueroa, P. B. S., Ferreira, A. F. F., Britto, L. R., Doussoulin,
A. P., and Torrao, A. d. S. (2021). Association between
thyroid function and Alzheimer’s disease: a systematic
review. Metabolic Brain Disease, 36(7):1523–1543.
Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975).
“Mini-Mental State”: a practical method for grading
the cognitive state of patients for the clinician. Journal
of Psychiatric Research, 12(3):189–198.
Holilah, D., Bustamam, A., and Sarwinda, D. (2021). Detec-
tion of alzheimer’s disease with segmentation approach
using k-means clustering and watershed method of mri
image. In Journal of Physics: Conference Series, vol-
ume 1725, page 012009. IOP Publishing.
Kim, D., Wang, R., Kiss, A., Bronskill, S. E., Lanctot, K. L.,
Herrmann, N., and Gallagher, D. (2021). Depression
and increased risk of alzheimer’s dementia: longitu-
dinal analyses of modifiable risk and sex-related fac-
tors. The American Journal of Geriatric Psychiatry,
29(9):917–926.
Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-
criterion variance analysis. Journal of the American
statistical Association, 47(260):583–621.
LaMontagne, P. J., Benzinger, T. L., Morris, J. C., Keefe,
S., Hornbeck, R., Xiong, C., Grant, E., Hassenstab,
J., Moulder, K., Vlassenko, A. G., Raichle, M. E.,
Cruchaga, C., and Marcus, D. (2019). OASIS-3: lon-
gitudinal neuroimaging, clinical, and cognitive dataset
for normal aging and Alzheimer disease. medRxiv,
(2019-12):1–37.
Lee, J.-G., Han, J., and Whang, K.-Y. (2007). Trajectory
clustering: a partition-and-group framework. In Pro-
ceedings of the 2007 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’07, page
593–604, New York, NY, USA. Association for Com-
puting Machinery.
MacQueen, J. (1967). Some methods for classification and
analysis of multivariate observations.
Manly, J. J., Tang, M.-X., Schupf, N., Stern, Y., Vonsat-
tel, J.-P. G., and Mayeux, R. (2008). Frequency and
course of mild cognitive impairment in a multiethnic
community. Annals of Neurology: Official Journal of
the American Neurological Association and the Child
Neurology Society, 63(4):494–506.
Morris, J. C. (1997). Clinical dementia rating: a reliable
and valid diagnostic and staging measure for dementia
of the alzheimer type. International Psychogeriatrics,
9(S1):173–176.
Overton, M., Pihlsg
˚
ard, M., and Elmst
˚
ahl, S. (2020). Di-
agnostic stability of mild cognitive impairment, and
predictors of reversion to normal cognitive functioning.
Dementia and Geriatric Cognitive Disorders, 48(5-
6):317–329.
Pearson, K. (1900). X. on the criterion that a given system of
deviations from the probable in the case of a correlated
system of variables is such that it can be reasonably
supposed to have arisen from random sampling. The
London, Edinburgh, and Dublin Philosophical Maga-
zine and Journal of Science, 50(302):157–175.
Putri, W., Hastari, D., Faizah, K. U., Rohimah, S., and Safira,
D. (2023). Implementation of na
¨
ıve bayes classifier for
classifying alzheimer’s disease using the k-means clus-
tering data sharing technique. Public Research Journal
of Engineering, Data Technology and Computer Sci-
ence, 1(1):47–54.
Qin, Y., Han, H., Li, Y., Cui, J., Jia, H., Ge, X., Ma, Y., Bai,
W., Zhang, R., Chen, D., Yi, F., and Yu, H. (2023).
Estimating bidirectional transitions and identifying
predictors of mild cognitive impairment. Neurology,
100(3):e297–e307.
Qiu, J., Goldstein, F. C., and Hanfelt, J. J. (2022). An ex-
ploration of subgroups of neuropsychiatric symptoms
in mild cognitive impairment and their risks of conver-
sion to dementia or death. The American Journal of
Geriatric Psychiatry, 30(8):925–934.
Reitz, C., Brayne, C., and Mayeux, R. (2011). Epidemiol-
ogy of alzheimer disease. Nature Reviews Neurology,
7(3):137–152.
Ribino, P., Di Napoli, C., Paragliola, G., Serino, L., Gas-
parini, F., and Chicco, D. (2023). Exploratory analysis
of longitudinal data of patients with dementia through
unsupervised techniques. In CEUR Workshop Pro-
ceedings of AIxAS 2023 – the 4th Italian Workshop
on Artificial Intelligence for an Ageing Society, 6-9
November 2023, Rome, Italy, volume 3623, page 67 –
87.
Ribino, P., Paragliola, G., Di Napoli, C., Mannone, M.,
Gasparini, F., and Chicco, D. (2024). Clustering of
Scale-IT-up 2025 - Workshop on Scaling Up Care for Older Adults
1090