
ICS (PE00000014) under the NRRP MUR program
funded by the EU - NGEU. We acknowledge the use
of IBM Quantum services for this work. The views
expressed are those of the authors, and do not re-
flect the official policy or position of IBM or the IBM
Quantum team.
REFERENCES
Abdulganiyu, O. H., Ait Tchakoucht, T., and Saheed, Y. K.
(2023). A systematic literature review for network in-
trusion detection system (ids). International journal
of information security, 22(5):1125–1162.
Bermot, E., Zoufal, C., Grossi, M., Schuhmacher, J.,
Tacchino, F., Vallecorsa, S., and Tavernelli, I.
(2023). Quantum Generative Adversarial Networks
For Anomaly Detection In High Energy Physics. In
2023 IEEE International Conference on Quantum
Computing and Engineering (QCE), volume 01, pages
331–341.
Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L., and
Coles, P. J. (2022). Challenges and opportunities in
quantum machine learning. Nature Computational
Science, 2(9):567–576.
Chang, S. Y., Thanasilp, S., Saux, B. L., Vallecorsa, S.,
and Grossi, M. (2024). Latent style-based quantum
gan for high-quality image generation. arXiv preprint
arXiv:2406.02668.
Dallaire-Demers, P.-L. and Killoran, N. (2018). Quantum
generative adversarial networks. Physical Review A,
98(1):012324.
De Falco, F., Ceschini, A., Sebastianelli, A., Le Saux, B.,
and Panella, M. (2024). Quantum latent diffusion
models. Quantum Machine Intelligence, 6(2):85.
Franco Cirillo (2024). Qgan code. https://github.com/
francocirill/qgan.
Gui, J., Sun, Z., Wen, Y., Tao, D., and Ye, J. (2021). A re-
view on generative adversarial networks: Algorithms,
theory, and applications. IEEE transactions on knowl-
edge and data engineering, 35(4):3313–3332.
Herr, D., Obert, B., and Rosenkranz, M. (2021). Anomaly
detection with variational quantum generative adver-
sarial networks. Quantum Science and Technology,
6(4):045004.
Kalfon, B., Cherkaoui, S., Laprade, J., Ahmad, O., and
Wang, S. (2024). Successive data injection in con-
ditional quantum GAN applied to time series anomaly
detection. IET Quantum Communication, 5(3):269–
281.
Lee, J. and Park, K. (2021). Gan-based imbalanced data
intrusion detection system. Personal and Ubiquitous
Computing, 25(1):121–128.
Lloyd, S. and Weedbrook, C. (2018). Quantum gener-
ative adversarial learning. Physical review letters,
121(4):040502.
Moustafa, N. and Slay, J. (2015). Unsw-nb15: a compre-
hensive data set for network intrusion detection sys-
tems (unsw-nb15 network data set). In 2015 military
communications and information systems conference
(MilCIS), pages 1–6. IEEE.
Muneer, S., Farooq, U., Athar, A., Ahsan Raza, M., Ghazal,
T. M., and Sakib, S. (2024). A critical review of artifi-
cial intelligence based approaches in intrusion detec-
tion: A comprehensive analysis. Journal of Engineer-
ing, 2024(1):3909173.
Ngo, T. A., Nguyen, T., and Thang, T. C. (2023). A survey
of recent advances in quantum generative adversarial
networks. Electronics, 12(4):856.
Patil, R., Biradar, R., Ravi, V., Biradar, P., and Ghosh, U.
(2022). Network traffic anomaly detection using pca
and bigan. Internet Technology Letters, 5(1):e235.
Rafique, S. H., Abdallah, A., Musa, N. S., and Murugan,
T. (2024). Machine learning and deep learning tech-
niques for internet of things network anomaly detec-
tion—current research trends. Sensors, 24(6):1968.
Rahman, M. A., Shahriar, H., Clincy, V., Hossain, M. F.,
and Rahman, M. (2023). A Quantum Generative Ad-
versarial Network-based Intrusion Detection System.
In 2023 IEEE 47th Annual Computers, Software, and
Applications Conference (COMPSAC), pages 1810–
1815, Torino, Italy. IEEE.
Schlegl, T., Seeb
¨
ock, P., Waldstein, S. M., Langs, G., and
Schmidt-Erfurth, U. (2019). f-anogan: Fast unsuper-
vised anomaly detection with generative adversarial
networks. Medical image analysis, 54:30–44.
Shahriar, M. H., Haque, N. I., Rahman, M. A., and Alonso,
M. (2020). G-ids: Generative adversarial networks as-
sisted intrusion detection system. In 2020 IEEE 44th
Annual Computers, Software, and Applications Con-
ference (COMPSAC), pages 376–385.
Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A.
(2009). A detailed analysis of the kdd cup 99 data
set. In 2009 IEEE symposium on computational intel-
ligence for security and defense applications, pages
1–6. Ieee.
Truong-Huu, T., Dheenadhayalan, N., Pratim Kundu,
P., Ramnath, V., Liao, J., Teo, S. G., and
Praveen Kadiyala, S. (2020). An empirical study on
unsupervised network anomaly detection using gener-
ative adversarial networks. In Proceedings of the 1st
ACM Workshop on Security and Privacy on Artificial
Intelligence, pages 20–29.
Vieloszynski, A., Cherkaoui, S., Laprade, J.-F., Nahman-
L
´
evesque, O., Aaraba, A., and Wang, S. (2024). La-
tentqgan: A hybrid qgan with classical convolutional
autoencoder. arXiv preprint arXiv:2409.14622.
Yamasaki, H., Isogai, N., and Murao, M. (2023). Advantage
of quantum machine learning from general computa-
tional advantages.
Zoufal, C., Lucchi, A., and Woerner, S. (2019). Quantum
generative adversarial networks for learning and load-
ing random distributions. npj Quantum Information,
5(1):103.
QAIO 2025 - Workshop on Quantum Artificial Intelligence and Optimization 2025
838