
Processing Systems 32, pages 8024–8035. Curran As-
sociates, Inc.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., M
¨
uller, A.,
Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and
´
Edouard Duchesnay
(2018). Scikit-learn: Machine learning in python.
Purdon, P. L., Sampson, A., Pavone, K. J., and Brown, E. N.
(2015). Clinical Electroencephalography for Anesthe-
siologists: Part I: Background and Basic Signatures.
Anesthesiology, 123(4):937–960.
Rasheed, S. S. and Miften, F. S. (2023). Improve of neona-
tal seizure detection based on eeg signal using k-mean
clustering. In 2023 Al-Sadiq International Conference
on Communication and Information Technology (AIC-
CIT), pages 181–184. IEEE.
Saminu, S., Xu, G., Shuai, Z., Kader, I. A. E., Jabire, A. H.,
Ahmed, Y. K., Karaye, I. A., and Ahmad, I. S. (2022).
Application of deep learning and wt-sst in localization
of epileptogenic zone using epileptic eeg signals. Ap-
plied Sciences, 12:4879.
Shin, H. W., Kim, H. J., Jang, Y. K., You, H. S., Huh, H.,
Choi, Y. J., Choi, S. U., and Hong, J. S. (2020). Mon-
itoring of anesthetic depth and eeg band power using
phase lag entropy during propofol anesthesia. BMC
Anesthesiology, 20:49.
Shoka, A. A. E., Dessouky, M. M., El-Sayed, A., and Hem-
dan, E. E.-D. (2023). Eeg seizure detection: concepts,
techniques, challenges, and future trends. Multimedia
Tools and Applications, 82:42021–42051.
Shu, K., Zhao, Y., Wu, L., Liu, A., Qian, R., and Chen, X.
(2023). Data augmentation for seizure prediction with
generative diffusion model.
Sindhu, K. R., Ngo, D., Ombao, H., Olaya, J. E., Shrey,
D. W., and Lopour, B. A. (2023). A novel method
for dynamically altering the surface area of intracra-
nial eeg electrodes. Journal of Neural Engineering,
20(2):026002.
Sun, D., van ’t Klooster, M. A., Ringeling, E. M., Schaft,
E. V., van Rijen, P. C., Leijten, F. S., Demuru, M.,
Robe, P. A., Hoff, R. G., and Zijlmans, M. (2024).
Pausing propofol during neurosurgery to record in-
traoperative electrocorticography is feasible;10 years
of clinical experience. Clinical Neurophysiology,
167:84–91.
Tatum, W. O., editor (2021). Handbook of EEG Interpreta-
tion. Springer Publishing Company.
Tuychiev, B. (2023). A guide to the gradient boost-
ing algorithm. https://www.datacamp.com/tutorial/
guide-to-the-gradient-boosting-algorithm. Accessed:
2024-09-07.
van der Walt, S., Sch
¨
onberger, J. L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J. D., Yager, N., Gouillart, E.,
and Yu, T. (2014). scikit-image: image processing in
python. PeerJ, 2:e453.
van Klink, N., van’t Klooster, M., Zelmann, R., Leijten, F.,
Ferrier, C., Braun, K., van Rijen, P., van Putten, M.,
Huiskamp, G., and Zijlmans, M. (2014). High fre-
quency oscillations in intra-operative electrocorticog-
raphy before and after epilepsy surgery. Clinical Neu-
rophysiology, 125(11):2212–2219.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Millman, K. J., Mayorov, N., Nel-
son, A. R. J., Jones, E., Kern, R., Larson, E., Carey,
C. J., Polat,
˙
I., Feng, Y., Moore, E. W., VanderPlas,
J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen,
I., Quintero, E. A., Harris, C. R., Archibald, A. M.,
Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and
SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272.
Wang, Z., Guo, J., van’t Klooster, M., Hoogteijling, S., Ja-
cobs, J., and Zijlmans, M. (2024). Prognostic value
of complete resection of the high-frequency oscilla-
tion area in intracranial eeg: A systematic review and
meta-analysis. Neurology, 102(9):e209216.
WHO (2019). Epilepsy: a public health imperative. World
Health Organization.
Wu, X., Zhang, D., Li, G., Gao, X., Metcalfe, B.,
and Chen, L. (2024). Data augmentation for in-
vasive brain-computer interfaces based on stereo-
electroencephalography (seeg). Journal of Neural En-
gineering.
Xu, Y., Yang, J., and Sawan, M. (2022). Multichannel syn-
thetic preictal eeg signals to enhance the prediction of
epileptic seizures. IEEE Transactions on Biomedical
Engineering, 69:3516–3525.
Zhong, H., Yu, S., Trinh, H., Lv, Y., Yuan, R., and Wang,
Y. (2023). Fine-tuning transfer learning based on dc-
gan integrated with self-attention and spectral nor-
malization for bearing fault diagnosis. Measurement,
210:112421.
Zhou, H., Wang, X., and Zhu, R. (2022). Feature selection
based on mutual information with correlation coeffi-
cient. Applied Intelligence, 52:5457–5474.
Zijlmans, M., Zweiphenning, W., and van Klink, N.
(2019). Changing concepts in presurgical assess-
ment for epilepsy surgery. Nature Reviews Neurology,
15(10):594–606.
Zweiphenning, W., van ’t Klooster, M. A., van Klink, N.
E. C., Leijten, F. S. S., Ferrier, C. H., Gebbink, T.,
Huiskamp, G., van Zandvoort, M. J. E., van Schoon-
eveld, M. M. J., Bourez, M., Goemans, S., Straumann,
S., van Rijen, P. C., Gosselaar, P. H., van Eijsden,
P., Otte, W. M., van Diessen, E., Braun, K. P. J., Zi-
jlmans, M., Bloemen-Carlier, E. M., Cibulkov
´
a, V.,
de Munnink, R., van der Salm, S., Eijkemans, M. J.,
van Eck, J. M. O., Velders, A., van Asch, C. J., Zwem-
mer, J., van Regteren-van Griethuysen, R., Smeding,
H., van der Berg, L., de Bresser, J., de Kort, G. A.,
and Dankbaar, J.-W. (2022). Intraoperative elec-
trocorticography using high-frequency oscillations or
spikes to tailor epilepsy surgery in the netherlands (the
hfo trial): a randomised, single-blind, adaptive non-
inferiority trial. The Lancet Neurology, 21:982–993.
SyntBioGen 2025 - Special Session on Synthetic biosignals generation for clinical applications
1152