
applications. Knowledge and Information Systems,
TBD(TBD):TBD.
APA (2024). American Psychological As-
sociation Dictionary of Psychology.
https://dictionary.apa.org/cognitive-distortion. Last
accessed 2024-12-01.
Beck, A. T. (1963). Thinking and depression: I. idiosyn-
cratic content and cognitive distortions. Archives of
General Psychiatry, 9(4):324–333.
Beck, A. T. (1964). Thinking and depression: Ii. theory and
therapy. Archives of General Psychiatry, 10(6):561–
571.
Beck, J. S. (1995). Cognitive therapy: Basics and beyond.
Guilford Press.
Blake, E., Dobson, K. S., Sheptycki, A. R., and Drapeau, M.
(2016). The relationship between depression severity
and cognitive errors. American Journal of Psychother-
apy, 70(2):203–221. PMID: 27329407.
Day, A. (2017). Cognitive-behavioural therapy. Individual
Psychological Therapies in Forensic Settings, pages
28–40.
Ding, X., Lybarger, K., Tauscher, J. S., and Cohen, T.
(2022). Improving classification of infrequent cogni-
tive distortions: Domain-specific model vs. data aug-
mentation. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Student Research Workshop, pages 68–75.
Fortune, E. E. and Goodie, A. S. (2012). Cognitive distor-
tions as a component and treatment focus of patho-
logical gambling: a review. Psychology of addictive
behaviors, 26(2):298.
Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten,
A., Yang, A., et al. (2024). The llama 3 herd of mod-
els. 10.48550/arXiv.2407.21783.
Hossain, S. B. (2009). Understanding Patterns of cognitive
Distortions. PhD thesis, M. Phil Thesis submitted to
the Dept. of Clinical Psychology, DU.
Jager-Hyman, S., Cunningham, A., Wenzel, A., Mattei, S.,
Brown, G. K., and Beck, A. T. (2014). Cognitive dis-
tortions and suicide attempts. Cognitive Therapy and
Research, 38(4):369–374.
Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford,
C., Chaplot, D. S., de las Casas, D., Bressand, F.,
Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R.,
Lachaux, M.-A., Stock, P., Scao, T. L., Lavril, T.,
Wang, T., Lacroix, T., and Sayed, W. E. (2023). Mis-
tral 7b. 10.48550/arXiv.2310.06825.
Kira, K. and Rendell, L. A. (1992). A practical approach
to feature selection. In Sleeman, D. and Edwards, P.,
editors, Machine Learning Proceedings 1992, pages
249–256. Morgan Kaufmann, San Francisco (CA).
Kononenko, I. (1994). Estimating attributes: Analysis and
extensions of relief. In Bergadano, F. and De Raedt,
L., editors, Machine Learning: ECML-94, pages 171–
182, Berlin, Heidelberg. Springer Berlin Heidelberg.
Mahali, S. C., Beshai, S., Feeney, J. R., and Mishra, S.
(2020). Associations of negative cognitions, emo-
tional regulation, and depression symptoms across
four continents: International support for the cogni-
tive model of depression. BMC Psychiatry, 20(1):18.
Mostafa, M., El Bolock, A., and Abdennadher, S. (2021).
Automatic detection and classification of cognitive
distortions in journaling text. In Proceedings of the
17th International Conference on Web Information
Systems and Technologies - WEBIST, pages 444–452.
SciTePress.
Riviere, M., Pathak, S., Sessa, P. G., Hardin, C., Bhu-
patiraju, S., Hussenot, L., Mesnard, T., Shahriari,
B., Ram
´
e, A., et al. (2024). Gemma 2: Im-
proving open language models at a practical size.
https://doi.org/10.48550/arXiv.2408.00118.
Shickel, B., Siegel, S., Heesacker, M., Benton, S., and
Rashidi, P. (2020). Automatic detection and clas-
sification of cognitive distortions in mental health
text. In 2020 IEEE 20th International Conference
on Bioinformatics and Bioengineering (BIBE), pages
275–280. IEEE.
Shreevastava, S. and Foltz, P. (2021). Detecting cognitive
distortions from patient-therapist interactions. In Pro-
ceedings of the Seventh Workshop on Computational
Linguistics and Clinical Psychology: Improving Ac-
cess, pages 151–158.
Simms, T., Ramstedt, C., Rich, M., Richards, M., Martinez,
T., and Giraud-Carrier, C. (2017). Detecting cognitive
distortions through machine learning text analytics. In
2017 IEEE international conference on healthcare in-
formatics (ICHI), pages 508–512. IEEE.
Tauscher, J. S., Lybarger, K., Ding, X., Chander, A., Hu-
denko, W. J., Cohen, T., and Ben-Zeev, D. (2023).
Automated detection of cognitive distortions in text
exchanges between clinicians and people with serious
mental illness. Psychiatric services, 74(4):407–410.
Uban, A.-S., Chulvi, B., and Rosso, P. (2021). An emotion
and cognitive based analysis of mental health disor-
ders from social media data. Future Generation Com-
puter Systems, 124:480–494.
Wang, B., Deng, P., Zhao, Y., and Qin, B. (2023). C2d2
dataset: A resource for analyzing cognitive distortions
and its impact on mental health. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 10149–10160.
Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B., Li, C., Liu, D., Huang, F., ..., H. W.,
and Qiu, Z. (2025). Qwen2.5 technical report.
https://doi.org/10.48550/arXiv.2412.15115.
Yurica, C. L. and DiTomasso, R. A. (2005). Cognitive dis-
tortions. Encyclopedia of cognitive behavior therapy,
pages 117–122.
Comparative Analysis of the Efficacy in the Classification of Cognitive Distortions Using LLMs
965