
in the vehicle environment are not yet available.
Arrhythmias can be detected using wearables such as
chest straps whereas sensors not worn by the driver
but integrated into the vehicle are sensitive to noise
and interference. To enable the detection of sudden
illnesses in vehicles, more vital parameters need to be
examined, and multiple measurement systems need to
be integrated to provide sufficient and reliable data.
The results indicate that there is a need for further
research and development of unobtrusive
measurement methods to detect driver states.
ACKNOWLEDGEMENTS
This work was funded by grants from the strategic
vehicle research and innovation (FFI) program at
Sweden’s Innovation Agency (VINNOVA), grant
number 2020-05157 and the Swedish Road
Administration (Skyltfonden), grant number
TRV2023/28021. The authors would like to
acknowledge the work by bachelor students Julia
Björkman, Zakaria Hersi, Abdinaser Muse, Krister
Mattsson, Anton Widengård, David Ruin, Emmy
Alvius, Lukas Pettersson, Lukas Wallén, Molly
Lundqvist, Joel Andersson, Petter Enlund, Ebba
Fredlund, Emma Hedberg, Love Stoopendahl, and
Stina Ström who performed the small-scale studies.
REFERENCES
Andersen, L. W., Kim, W. Y., Chase, M., Berg, K.-M.,
Mortensen, S. J., Moskowitz, A., Novack, V., Cocchi,
M. N., & Donnino, M. W. (2016). The prevalence and
significance of abnormal vital signs prior to in-hospital
cardiac arrest. Resuscitation, 98, 112-117.
https://doi.org/https://doi.org/10.1016/j.resuscitation.2
015.08.016
Andersson, J., Enlund, P., Fredlund, E., Emma Hedberg,
Stoopendahl, L., & Ström, S. (2024). EKG- och
pulsmätning i fordon. Analys av brus och störningar i
fordon för att detektera kardiovaskulära sjukdomar med
EKG- och pulsmätning. Chalmers Tekniska Högskola].
Göteborg.
Ansari, Y., Mourad, O., Qaraqe, K., & Serpedin, E. (2023).
Deep learning for ECG Arrhythmia detection and
classification: an overview of progress for period 2017–
2023 [Systematic Review]. Frontiers in Physiology, 14.
https://doi.org/10.3389/fphys.2023.1246746
Arakawa, T. (2021). A Review of Heartbeat Detection
Systems for Automotive Applications. Sensors, 21(18),
6112. https://www.mdpi.com/1424-8220/21/18/6112
Björkman, J., Hersi, Z., Muse, A., & Mattsson, K. (2022).
Detektering av kännetecken på arytmi med en
millimetervågsradar Chalmers Tekniska Högskola].
Göteborg. http://hdl.handle.net/20.500.12380/306079
Bousseljot, R., Kreiseler, D., & Schnabel, A. (1995).
Nutzung der EKG-Signaldatenbank CARDIODAT der
PTB über das Internet. Biomedical Engineering /
Biomedizinische Technik, 40(s1), 317-318.
https://doi.org/doi:10.1515/bmte.1995.40.s1.317
Büttner, A., Heimpel, M., & Eisenmenger, W. (1999).
Sudden natural death ‘at the wheel’: a retrospective
study over a 15-year time period (1982–1996). Forensic
Science International, 103(2), 101-112.
https://doi.org/10.1016/s0379-0738(99)00063-8
Chen, W., Guo, C.-L., Zhang, P.-S., Liu, C., Qiao, H.,
Zhang, J.-G., & Meng, F.-G. (2014). Heart rate changes
in partial seizures: analysis of influencing factors
among refractory patients. BMC Neurology, 14(1),
135. https://doi.org/10.1186/1471-2377-14-135
Churpek, M. M., Yuen, T. C., Park, S. Y., Meltzer, D. O.,
Hall, J. B., & Edelson, D. P. (2012). Derivation of a
cardiac arrest prediction model using ward vital signs*.
Critical Care Medicine, 40(7).
https://journals.lww.com/ccmjournal/fulltext/2012/070
00/derivation_of_a_cardiac_arrest_prediction_model.1
3.aspx
Eilebrecht, B., Wartzek, T., Willkomm, J., Schommartz, A.,
Walter, M., & Leonhardt, S. (2012). Motion Artifact
Removal from Capacitive ECG Measurements by
Means of Adaptive Filtering. In Á. Jobbágy, 5th
European Conference of the International Federation
for Medical and Biological Engineering Berlin,
Heidelberg.
Feng, K., Pi, X., Liu, H., & Sun, K. (2019). Myocardial
Infarction Classification Based on Convolutional
Neural Network and Recurrent Neural Network.
Applied Sciences, 9(9), 1879. https://www.mdpi.com/
2076-3417/9/9/1879
Fredriksson, R., Lenné, M. G., van Montfort, S., & Grover,
C. (2021). European NCAP Program Developments to
Address Driver Distraction, Drowsiness and Sudden
Sickness [Perspective]. Frontiers in Neuroergonomics,
2(33). https://doi.org/10.3389/fnrgo.2021.786674
Gibson, C. M., Mehta, S., Ceschim, M. R. S., Frauenfelder,
A., Vieira, D., Botelho, R., Fernandez, F., Villagran, C.,
Niklitschek, S., Matheus, C. I., Pinto, G., Vallenilla, I.,
Lopez, C., Acosta, M. I., Munguia, A., Fitzgerald, C.,
Mazzini, J., Pisana, L., & Quintero, S. (2022).
Evolution of single-lead ECG for STEMI detection
using a deep learning approach. International Journal of
Cardiology, 346, 47-52. https://doi.org/https://doi.org/
10.1016/j.ijcard.2021.11.039
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J.
M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,
G. B., Peng, C. K., & Stanley, H. E. (2000).
PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex
physiologic signals. Circulation, 101(23), E215-220.
https://doi.org/10.1161/01.cir.101.23.e215
Halinen, M. O., & Jaussi, A. (1994). Fatal road accidents
caused by sudden death of the driver in Finland and
Vaud, Switzerland. European Heart Journal, 15(7), 888-
DEMS 2025 - Special Session on Design and Evaluation of Monitoring Systems
1124