
boa, H. (2020). Tsfel: Time series feature extraction
library. SoftwareX, 11:100456.
Belo, D., Rodrigues, J., Vaz, J. R., Pezarat-Correia, P., and
Gamboa, H. (2017). Biosignals learning and synthesis
using deep neural networks. Biomedical engineering
online, 16:1–17.
Di Costanzo, A., Spaccarotella, C. A. M., Esposito, G., and
Indolfi, C. (2024). An artificial intelligence analysis
of electrocardiograms for the clinical diagnosis of car-
diovascular diseases: a narrative review. Journal of
Clinical Medicine, 13(4):1033.
Dissanayake, T., Fernando, T., Denman, S., Sridharan, S.,
and Fookes, C. (2022). Generalized generative deep
learning models for biosignal synthesis and modality
transfer. IEEE Journal of Biomedical and Health In-
formatics, 27(2):968–979.
Esteban, C., Hyland, S. L., and R
¨
atsch, G. (2017). Real-
valued (medical) time series generation with recurrent
conditional gans. arXiv preprint arXiv:1706.02633.
Fekri, M. N., Ghosh, A. M., and Grolinger, K. (2019).
Generating energy data for machine learning with re-
current generative adversarial networks. Energies,
13(1):130.
Kynk
¨
a
¨
anniemi, T., Karras, T., Laine, S., Lehtinen, J., and
Aila, T. (2019). Improved precision and recall metric
for assessing generative models. Advances in neural
information processing systems, 32.
Liu, C., Zhang, X., Zhao, L., Liu, F., Chen, X., Yao,
Y., and Li, J. (2018). Signal quality assessment and
lightweight qrs detection for wearable ecg smartvest
system. IEEE Internet of Things Journal, 6(2):1363–
1374.
Liu, G., Han, X., Tian, L., Zhou, W., and Liu, H.
(2021). Ecg quality assessment based on hand-
crafted statistics and deep-learned s-transform spec-
trogram features. Computer Methods and Programs
in Biomedicine, 208:106269.
Mahajan, P., Uddin, S., Hajati, F., and Moni, M. A. (2023).
Ensemble learning for disease prediction: A review.
In Healthcare, volume 11, page 1808. MDPI.
Monachino, G., Zanchi, B., Fiorillo, L., Conte, G., Auric-
chio, A., Tzovara, A., and Faraci, F. D. (2023). Deep
generative models: The winning key for large and eas-
ily accessible ecg datasets? Computers in biology and
medicine, page 107655.
Murtaza, H., Ahmed, M., Khan, N. F., Murtaza, G., Zafar,
S., and Bano, A. (2023). Synthetic data generation:
State of the art in health care domain. Computer Sci-
ence Review, 48:100546.
Naeem, M. F., Oh, S. J., Uh, Y., Choi, Y., and Yoo, J.
(2020). Reliable fidelity and diversity metrics for gen-
erative models. In International Conference on Ma-
chine Learning, pages 7176–7185. PMLR.
Neifar, N., Ben-Hamadou, A., Mdhaffar, A., and Jmaiel,
M. (2023). Diffecg: A versatile probabilistic diffu-
sion model for ecg signals synthesis. arXiv preprint
arXiv:2306.01875.
Nishikimi, R., Nakano, M., Kashino, K., and Tsukada, S.
(2023). Variational autoencoder–based neural electro-
cardiogram synthesis trained by fem-based heart sim-
ulator. Cardiovascular Digital Health Journal.
Reyna, M. A., Sadr, N., Alday, E. A. P., Gu, A., Shah,
A. J., Robichaux, C., Rad, A. B., Elola, A., Seyedi,
S., Ansari, S., et al. (2021). Will two do? vary-
ing dimensions in electrocardiography: the phys-
ionet/computing in cardiology challenge 2021. In
2021 Computing in Cardiology (CinC), volume 48,
pages 1–4. IEEE.
Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O., and
Gelly, S. (2018). Assessing generative models via pre-
cision and recall. Advances in neural information pro-
cessing systems, 31.
Stein, G., Cresswell, J., Hosseinzadeh, R., Sui, Y., Ross, B.,
Villecroze, V., Liu, Z., Caterini, A. L., Taylor, E., and
Loaiza-Ganem, G. (2024). Exposing flaws of gener-
ative model evaluation metrics and their unfair treat-
ment of diffusion models. Advances in Neural Infor-
mation Processing Systems, 36.
Stenger, M., Leppich, R., Foster, I., Kounev, S., and Bauer,
A. (2024). Evaluation is key: a survey on evalua-
tion measures for synthetic time series. Journal of Big
Data, 11(1):66.
Wagner, P., Strodthoff, N., Bousseljot, R.-D., Kreiseler, D.,
Lunze, F. I., Samek, W., and Schaeffter, T. (2020).
Ptb-xl, a large publicly available electrocardiography
dataset. Scientific data, 7(1):1–15.
Wulan, N., Wang, W., Sun, P., Wang, K., Xia, Y., and
Zhang, H. (2020). Generating electrocardiogram sig-
nals by deep learning. Neurocomputing, 404:122–136.
Zama, M. H. and Schwenker, F. (2023). Ecg synthesis via
diffusion-based state space augmented transformer.
Sensors, 23(19):8328.
Zhang, J., Wang, L., Zhang, W., and Yao, J. (2018). A sig-
nal quality assessment method for electrocardiogra-
phy acquired by mobile device. In 2018 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine
(BIBM), pages 1–3. IEEE.
APPENDIX
This appendix provides supplementary visualizations
of two examples of Normal 12-lead ECG tracings in-
cluded in the human evaluation questionnaire. Fig-
ure 5 shows a real ECG sourced from the PTB-XL
database, while Figure 6 depicts a synthetic ECG gen-
erated by the SSSD-ECG model.
SyntBioGen 2025 - Special Session on Synthetic biosignals generation for clinical applications
1164