
Holmes, Z., Arrasmith, A., Yan, B., Coles, P. J., Albrecht,
A., and Sornborger, A. T. (2021). Barren plateaus pre-
clude learning scramblers. Physical Review Letters,
126(19):190501.
Holmes, Z., Sharma, K., Cerezo, M., and Coles, P. J.
(2022). Connecting ansatz expressibility to gradi-
ent magnitudes and barren plateaus. PRX Quantum,
3(1):010313.
Kawamura, M., Yoshimi, K., Misawa, T., Yamaji, Y., Todo,
S., and Kawashima, N. (2017). Quantum lattice
model solver HΦ. Computer Physics Communica-
tions, 217:180–192.
Levine, Y., Sharir, O., Cohen, N., and Shashua, A. (2019).
Quantum entanglement in deep learning architectures.
Physical Review Letters, 122(6):065301.
Lin, Y.-P., Kao, Y.-J., Chen, P., and Lin, Y.-C. (2017). Grif-
fiths singularities in the random quantum Ising anti-
ferromagnet: A tree tensor network renormalization
group study. Physical Review B, 96(6):064427.
Liu, D., Ran, S.-J., Wittek, P., Peng, C., Garc
´
ıa, R. B., Su,
G., and Lewenstein, M. (2019). Machine learning by
unitary tensor network of hierarchical tree structure.
New Journal of Physics, 21(7):073059.
Liu, Y., Liu, X., Li, F., Fu, H., Yang, Y., Song, J., Zhao, P.,
Wang, Z., Peng, D., Chen, H., et al. (2021). Closing
the “quantum supremacy” gap: achieving real-time
simulation of a random quantum circuit using a new
sunway supercomputer. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12.
MacKay, D. J. (2003). Information Theory, inference and
learning algorithms. Cambridge university press.
Malz, D., Styliaris, G., Wei, Z.-Y., and Cirac, J. I.
(2024). Preparation of matrix product states with
log-depth quantum circuits. Physical Review Letters,
132(4):040404.
Markov, I. L. and Shi, Y. (2008). Simulating quantum com-
putation by contracting tensor networks. SIAM Jour-
nal on Computing, 38(3):963–981.
McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush,
R., and Neven, H. (2018). Barren plateaus in quantum
neural network training landscapes. Nature Commu-
nications, 9(1):4812.
Mitarai, K., Negoro, M., Kitagawa, M., and Fujii, K.
(2018). Quantum circuit learning. Physical Review
A, 98(3):032309.
Murg, V., Verstraete, F., Legeza,
¨
O., and Noack, R. M.
(2010). Simulating strongly correlated quantum sys-
tems with tree tensor networks. Physical Review B,
82(20):205105.
Nagaj, D., Farhi, E., Goldstone, J., Shor, P., and Sylvester,
I. (2008). Quantum transverse-field Ising model on
an infinite tree from matrix product states. Physical
Review B, 77(21):214431.
Ortiz Marrero, C., Kieferov
´
a, M., and Wiebe, N. (2021).
Entanglement-induced barren plateaus. PRX Quan-
tum, 2(4):040316.
Or
´
us, R. (2014). A practical introduction to tensor net-
works: Matrix product states and projected entangled
pair states. Annals of physics, 349:117–158.
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou,
X.-Q., Love, P. J., Aspuru-Guzik, A., and O’brien,
J. L. (2005). Simulated quantum computation of
molecular energies. Science, 309(5741):1704–1707.
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou,
X.-Q., Love, P. J., Aspuru-Guzik, A., and O’brien,
J. L. (2014). A variational eigenvalue solver on a pho-
tonic quantum processor. Nature Communications,
5(1):4213.
Preskill, J. (2018). Quantum computing in the NISQ era
and beyond. Quantum, 2:79.
Ran, S.-J. (2020). Encoding of matrix product states into
quantum circuits of one-and two-qubit gates. Physical
Review A, 101(3):032310.
Rudolph, M. S., Chen, J., Miller, J., Acharya, A., and
Perdomo-Ortiz, A. (2023a). Decomposition of matrix
product states into shallow quantum circuits. Quan-
tum Science and Technology, 9(1):015012.
Rudolph, M. S., Miller, J., Motlagh, D., Chen, J., Acharya,
A., and Perdomo-Ortiz, A. (2023b). Synergistic pre-
training of parametrized quantum circuits via tensor
networks. Nature Communications, 14(1):8367.
Schuld, M. and Killoran, N. (2019). Quantum machine
learning in feature Hilbert spaces. Physical Review
Letters, 122(4):040504.
Sharma, K., Cerezo, M., Cincio, L., and Coles, P. J.
(2022). Trainability of dissipative perceptron-based
quantum neural networks. Physical Review Letters,
128(18):180505.
Shi, Y.-Y., Duan, L.-M., and Vidal, G. (2006). Classical
simulation of quantum many-body systems with a tree
tensor network. Physical Review A, 74(2):022320.
Shirakawa, T., Ueda, H., and Yunoki, S. (2024). Automatic
quantum circuit encoding of a given arbitrary quantum
state. Physical Review Research, 6(4):043008.
Shor, P. W. (1994). Algorithms for quantum computation:
discrete logarithms and factoring. In Proceedings 35th
annual symposium on foundations of computer sci-
ence, pages 124–134. Ieee.
Silvi, P., Giovannetti, V., Montangero, S., Rizzi, M., Cirac,
J. I., and Fazio, R. (2010). Homogeneous binary
trees as ground states of quantum critical Hamiltoni-
ans. Physical Review A, 81(6):062335.
Stoudenmire, E. and Schwab, D. J. (2016). Supervised
learning with tensor networks. Advances in neural in-
formation processing systems, 29.
Tagliacozzo, L., Evenbly, G., and Vidal, G. (2009). Sim-
ulation of two-dimensional quantum systems using a
tree tensor network that exploits the entropic area law.
Physical Review B, 80(23):235127.
Vidal, G. (2003). Efficient classical simulation of slightly
entangled quantum computations. Physical Review
Letters, 91(14):147902.
Wang, Z., Hadfield, S., Jiang, Z., and Rieffel, E. G.
(2018). Quantum approximate optimization algorithm
for maxcut: A fermionic view. Physical Review A,
97(2):022304.
White, S. R. (1992). Density matrix formulation for quan-
tum renormalization groups. Physical Review Letters,
69(19):2863.
QAIO 2025 - Workshop on Quantum Artificial Intelligence and Optimization 2025
802