
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. (2024). The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.
Kannan, R. R., Rajalakshmi, R., and Kumar, L. (2021). In-
dicbert based approach for sentiment analysis on code-
mixed tamil tweets. In FIRE (Working Notes), pages
729–736.
Kulkarni, A., Mandhane, M., Likhitkar, M., Kshirsagar,
G., and Joshi, R. (2021). L3cubemahasent: A marathi
tweet-based sentiment analysis dataset. In Proceedings
of the Eleventh Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analysis,
pages 213–220.
Kumar, A. and Albuquerque, V. H. C. (2021). Sentiment
analysis using xlm-r transformer and zero-shot transfer
learning on resource-poor indian language. Transactions
on Asian and Low-Resource Language Information Pro-
cessing, 20(5):1–13.
Kumari, D., Chennabasavaraj, S., Garera, N., and Ekbal, A.
(2021). Sentiment preservation in review translation us-
ing curriculum-based re-inforcement framework. In Pro-
ceedings of machine translation summit XVIII: Research
track, pages 150–162.
Lample, G., Ott, M., Conneau, A., Denoyer, L., and Ran-
zato, M. (2018). Phrase-based & neural unsupervised
machine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 5039–5049.
Luong, T., Pham, H., and Manning, C. D. (2015). Effec-
tive approaches to attention-based neural machine trans-
lation. In M
`
arquez, L., Callison-Burch, C., and Su, J., ed-
itors, Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1412–
1421, Lisbon, Portugal. Association for Computational
Linguistics.
Mabokela, K. R., Celik, T., and Raborife, M. (2022).
Multilingual sentiment analysis for under-resourced lan-
guages: a systematic review of the landscape. IEEE Ac-
cess, 11:15996–16020.
Malinga, M., Lupanda, I., Nkongolo, M. W., and van
Deventer, P. (2024). A multilingual sentiment lexi-
con for low-resource language translation using large
languages models and explainable ai. arXiv preprint
arXiv:2411.04316.
Patra, B. G., Das, D., Das, A., and Prasath, R. (2015).
Shared task on sentiment analysis in indian languages
(sail) tweets-an overview. In Mining Intelligence and
Knowledge Exploration: Third International Confer-
ence, MIKE 2015, Hyderabad, India, December 9-11,
2015, Proceedings 3, pages 650–655. Springer.
Popovi
´
c, M. (2015). chrf: character n-gram f-score for au-
tomatic mt evaluation. In Proceedings of the tenth work-
shop on statistical machine translation, pages 392–395.
Rei, R., De Souza, J. G., Alves, D., Zerva, C., Farinha,
A. C., Glushkova, T., Lavie, A., Coheur, L., and Martins,
A. F. (2022). Comet-22: Unbabel-ist 2022 submission
for the metrics shared task. In Proceedings of the Sev-
enth Conference on Machine Translation (WMT), pages
578–585.
Rikters, M. and K
¯
ale, M. (2023). The future of meat: Senti-
ment analysis of food tweets. In Proceedings of the 11th
International Workshop on Natural Language Process-
ing for Social Media, pages 38–46.
Saadany, H. and Ora
ˇ
san, C. (2021). Bleu, meteor, bertscore:
Evaluation of metrics performance in assessing critical
translation errors in sentiment-oriented text. In Proceed-
ings of the Translation and Interpreting Technology On-
line Conference, pages 48–56.
Saadany, H. and Or
ˇ
asan, C. (2020). Is it great or terri-
ble? preserving sentiment in neural machine translation
of arabic reviews. In Proceedings of the Fifth Arabic
Natural Language Processing Workshop, pages 24–37.
Sennrich, R., Haddow, B., and Birch, A. (2016). Neural
machine translation of rare words with subword units. In
Erk, K. and Smith, N. A., editors, Proceedings of the
54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computational
Linguistics.
Shelke, M. B., Alsubari, S. N., Panchal, D., and Deshmukh,
S. N. (2022). Lexical resource creation and evaluation:
sentiment analysis in marathi. In Smart Trends in Com-
puting and Communications: Proceedings of SmartCom
2022, pages 187–195. Springer.
Si, C., Wu, K., Aw, A., and Kan, M.-Y. (2019). Sentiment
aware neural machine translation. In Proceedings of the
6th Workshop on Asian Translation, pages 200–206.
Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ram
´
e, A., et al. (2024). Gemma 2: Improving
open language models at a practical size. arXiv preprint
arXiv:2408.00118.
Troiano, E., Klinger, R., and Pad
´
o, S. (2020). Lost in
back-translation: Emotion preservation in neural ma-
chine translation. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pages
4340–4354.
Sentiment-Aware Machine Translation for Indic Languages
953