
Jung, M., Yang, W., Lee, D., Gil, H., Kim, G., and Kim, A.
(2024). Helipr: Heterogeneous lidar dataset for inter-
lidar place recognition under spatiotemporal varia-
tions. The International Journal of Robotics Research,
43:1867–1883.
Karle, P., Betz, T., Bosk, M., Fent, F., Gehrke, N.,
Geisslinger, M., Gressenbuch, L., Hafemann, P., Hu-
ber, S., H
¨
ubner, M., Huch, S., Kaljavesi, G., Kerbl,
T., Kulmer, D., Maierhofer, S., Mascetta, T., Pfab,
F., Rezabek, F., Rivera, E., Sagmeister, S., Seidlitz,
L., Sauerbeck, F., Tahiraj, I., Trauth, R., Uhlemann,
N., W
¨
ursching, G., Zarrouki, B., Althoff, M., Betz,
J., Bengler, K., Carle, G., Diermeyer, F., Ott, J., and
Lienkamp, M. (2023). Edgar: An autonomous driv-
ing research platform – from feature development to
real-world application.
Kim, G., Park, Y. S., Cho, Y., Jeong, J., and Kim, A.
(2020). Mulran: Multimodal range dataset for urban
place recognition. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pages
6246–6253. IEEE.
Koide, K. (2024). small gicp: Efficient and parallel algo-
rithms for point cloud registration. Journal of Open
Source Software, 9:6948.
Koide, K., Miura, J., and Menegatti, E. (2019). A portable
three-dimensional lidar-based system for long-term
and wide-area people behavior measurement. Inter-
national Journal of Advanced Robotic Systems, 16.
Koide, K., Oishi, S., Yokozuka, M., and Banno, A. (2024a).
Tightly coupled range inertial localization on a 3d
prior map based on sliding window factor graph opti-
mization. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 1745–1751.
IEEE.
Koide, K., Yokozuka, M., Oishi, S., and Banno, A. (2024b).
Glim: 3d range-inertial localization and mapping with
gpu-accelerated scan matching factors. Robotics and
Autonomous Systems, 179:104750.
Kulmer, D., Tahiraj, I., Chumak, A., and Lienkamp, M.
(2024). Multi-lica: A motion- and targetless multi
- lidar-to-lidar calibration framework. In 2024 IEEE
International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI), pages 1–7.
IEEE.
Leitenstern, M., Sauerbeck, F., Kulmer, D., and Betz, J.
(2024). Flexmap fusion: Georeferencing and auto-
mated conflation of hd maps with openstreetmap.
Miller, I. D., Cowley, A., Konkimalla, R., Shivakumar,
S. S., Nguyen, T., Smith, T., Taylor, C. J., and Ku-
mar, V. (2021). Any way you look at it: Semantic
crossview localization and mapping with lidar. IEEE
Robotics and Automation Letters, 6:2397–2404.
Pan, Y., Zhong, X., Wiesmann, L., Posewsky, T., Behley,
J., and Stachniss, C. (2024). Pin-slam: Lidar slam
using a point-based implicit neural representation for
achieving global map consistency. IEEE Transactions
on Robotics, 40:4045–4064.
Razlaw, J., Droeschel, D., Holz, D., and Behnke, S. (2015).
Evaluation of registration methods for sparse 3d laser
scans. In 2015 European Conference on Mobile
Robots (ECMR), pages 1–7. IEEE.
Suger, B. and Burgard, W. (2017). Global outer-urban
navigation with openstreetmap. In 2017 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 1417–1422. IEEE.
Vizzo, I., Guadagnino, T., Mersch, B., Wiesmann, L.,
Behley, J., and Stachniss, C. (2023). Kiss-icp: In de-
fense of point-to-point icp – simple, accurate, and ro-
bust registration if done the right way. IEEE Robotics
and Automation Letters, 8:1029–1036.
Xia, Z., Shi, Y., Li, H., and Kooij, J. F. P. (2024). Adapting
Fine-Grained Cross-View Localization to Areas With-
out Fine Ground Truth, pages 397–415.
Xu, W., Cai, Y., He, D., Lin, J., and Zhang, F. (2022). Fast-
lio2: Fast direct lidar-inertial odometry. IEEE Trans-
actions on Robotics, 38:2053–2073.
Yan, F., Vysotska, O., and Stachniss, C. (2019). Global lo-
calization on openstreetmap using 4-bit semantic de-
scriptors. In 2019 European Conference on Mobile
Robots (ECMR), pages 1–7. IEEE.
Yang, S., Jiang, R., Wang, H., and Ge, S. S. (2017).
Road constrained monocular visual localization using
gaussian-gaussian cloud model. IEEE Transactions
on Intelligent Transportation Systems, 18:3449–3456.
Yifan, D., Zhang, X., Li, Y., You, G., Chu, X., Ji, J., and
Zhang, Y. (2024). Cellmap: Enhancing lidar slam
through elastic and lightweight spherical map repre-
sentation.
Zheng, X. and Zhu, J. (2024a). Traj-lio: A resilient multi-
lidar multi-imu state estimator through sparse gaus-
sian process.
Zheng, X. and Zhu, J. (2024b). Traj-lo: In defense of
lidar-only odometry using an effective continuous-
time trajectory. IEEE Robotics and Automation Let-
ters, 9:1961–1968.
VEHITS 2025 - 11th International Conference on Vehicle Technology and Intelligent Transport Systems
188