
Haussmann, J., Blochinger, W., and Kuechlin, W. (2019a).
Cost-efficient parallel processing of irregularly struc-
tured problems in cloud computing environments.
Cluster Computing, 22(3):887–909.
Haussmann, J., Blochinger, W., and Kuechlin, W. (2019b).
Cost-optimized parallel computations using volatile
cloud resources. In Djemame, K., Altmann, J.,
Ba
˜
nares, J.
´
A., Agmon Ben-Yehuda, O., and Naldi,
M., editors, Economics of Grids, Clouds, Systems, and
Services, pages 45–53, Cham. Springer International
Publishing.
Haussmann, J., Blochinger, W., and Kuechlin, W. (2020).
An elasticity description language for task-parallel
cloud applications. In CLOSER, pages 473–481.
Heroux, M. A., Dongarra, J., and Luszczek, P. (2013). Hpcg
benchmark technical specification.
Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B. L.,
Cohen, J., DeVito, Z., Haque, R., Laney, D., Luke,
E., Wang, F., Richards, D., Schulz, M., and Still,
C. (2013). Exploring traditional and emerging par-
allel programming models using a proxy application.
In 27th IEEE International Parallel & Distributed
Processing Symposium (IEEE IPDPS 2013), Boston,
USA.
Li, M., Zhang, J., Wan, J., Ren, Y., Zhou, L., Wu, B., Yang,
R., and Wang, J. (2020). Distributed machine learning
load balancing strategy in cloud computing services.
Wireless Networks, 26:5517–5533.
Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L.,
and Leaf, D. (2012). NIST Cloud Computing Refer-
ence Architecture: Recommendations of the National
Institute of Standards and Technology. CreateSpace
Independent Publishing Platform, USA.
Navaux, P. O. A., Lorenzon, A. F., and da Silva Serpa, M.
(2023). Challenges in high-performance computing.
Journal of the Brazilian Computer Society, 29(1):51–
62.
Ohue, M., Aoyama, K., and Akiyama, Y. (2020). High-
performance cloud computing for exhaustive protein-
protein docking.
Rak, M., Cuomo, A., and Villano, U. (2013).
Cost/performance evaluation for cloud applications
using simulation. In 2013 Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, pages 152–157.
Rathnayake, S., Loghin, D., and Teo, Y. M. (2017).
Celia: Cost-time performance of elastic applications
on cloud. In 2017 46th International Conference on
Parallel Processing (ICPP), pages 342–351.
Stratton, J. A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang,
L.-W., Anssari, N., Liu, G. D., and Hwu, W.-m. W.
(2012). Parboil: A revised benchmark suite for sci-
entific and commercial throughput computing. Cen-
ter for Reliable and High-Performance Computing,
127:27.
Subramanian, L., Seshadri, V., Kim, Y., Jaiyen, B., and
Mutlu, O. (2013). MISE: Providing performance
predictability and improving fairness in shared main
memory systems. In IEEE HPCA, pages 639–650.
Suleman, M. A., Qureshi, M. K., and Patt, Y. N.
(2008). Feedback-driven Threading: Power-efficient
and High-performance Execution of Multi-threaded
Workloads on CMPs. SIGARCH Computer Architec-
ture News, 36(1):277–286.
Wan, B., Dang, J., Li, Z., Gong, H., Zhang, F., and Oh, S.
(2020). Modeling analysis and cost-performance ratio
optimization of virtual machine scheduling in cloud
computing. IEEE Transactions on Parallel and Dis-
tributed Systems, 31(7):1518–1532.
Zhang, L., Zhou, L., and Salah, A. (2020). Efficient sci-
entific workflow scheduling for deadline-constrained
parallel tasks in cloud computing environments. In-
formation Sciences, 531:31–46.
CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science
238