
Algorithm 1: Data Construction.
Data: O1.owl, O2.owl, Re f erence Alignment.rd f;
Result: Ontology Data Matrix: array of V Data Ontology
vector (CSV file);
Re f erence Alignment Vector: Vector of reference alignment;
i ← 0;
for class, ClassO1, of O1.OW L do
for class, ClassO2, of O2.OW L do
Sub-Class1←Sub-classes Of ClassO1;
Sub-Class2←Sub-classes Of ClassO2;
Disjoint-Class1←Disjoint-classes Of ClassO1;
Disjoint-Class2←Disjoint-classes Of ClassO2;
Data-Propclass1 ← Data Properties Of ClassO1;
Data-Propclass2 ← Data Properties Of ClassO2;
Object-Propclass1 ← Object Properties Of ClassO1;
Object-Propclass2 ← Object Properties Of ClassO2;
Individuals-class1 ← individuals Of ClassO1;
Individuals-class2 ← individuals Of ClassO2;
Comments-class1 ← Comments Of ClassO1;
Comments-class2 ← Comments Of ClassO2;
V Data Ontology←(ClassO1, ClassO1, Sub −Class1,
Sub −Class2, Dis joint −Class1, Dis joint −Class2,
Data − Propclass1, Data − Propclass1,
Ob ject − Propclass1, Ob ject −Propclass2,
Individuals − class1, Individuals − class2,
Comments − class1, Comments − class2);
Ontology Data Matrix[i]← V Data Ontology;
if (ClassO1, ClassO2 ) ∈ Re f erence Alignment.rd f
then
Con f ident alignment ← 1 ;
else
Con f ident alignment ← 0 ;
end
Re f erence Alignment Vector[i]←
Con f ident alignment;
i ← i+1;
end
end
3.3 Step 3: Ontology Similarity Value
Computing
This step takes as input the normalized ontology data
matrix produced at the end of the Ontology Nor-
malization step. It aims to calculate the syntactic
and external similarity measures for the different en-
tity pairs stored in the input normalized ontology
data matrix. As output, the current step generates
two matrices: a String Similarity Matrix and a Lan-
guage Similarity Matrix. These matrices contain the
syntactic and external similarity values calculated for
the ontological data stored in the input matrix.
To build the syntactic similarity matrix, we used
26 individual matchers implementing 26 string-based
techniques (Abbassi and Hlaoui, 2024a)(see Table 1).
For the construction of the external similarity ma-
trix, we have used four individual matchers imple-
menting four language-based techniques(see Table 1).
Algorithm 2: Calculation Similarity Values.
Data: Normalized Ontology Data Matrix: matrix of
Normalized V Data Ontology vectors;
Result: String Similarity Matrix, Language similarity Matrix :
matrices of real values (CSV file);
i ← 0;
for V DATA of Normalised Ontology Data Matrix do
for each in f ormation of VDATA do
SV sim Class←String Sim Class
(NClassO1,NClassO2);
SV sim SubClass←String Sim SubClass
(NSubClassO1,NSubClassO2);
SV sim Dis jointClass←String Sim DisjointClass
(NDis jointClassO1, NDis jointClassO2);
SV sim DataProperties←String Sim DataProperties
(NDataPropertiesO1,NDataPropertiesO2);
SV sim Ob jectProperties←String Sim ObjectProperties
(NOb jectPropertiesO1,NOb jectPropertiesO2);
SV sim Individuals←String Sim Individuals
(NIndividualsO1,NIndividualsO2);
SV sim ClassComments←String Sim ClassComments
(NClassCommentsO1,NClassCommentsO2);
Syntactic V Sim←GlobalConstructor(SVsim Class,
SV sim SubClass, SVsim Dis jointClass,
SV sim DataProperties, SVsim Ob jectProperties,
SV sim Individuals, SVsim ClassComments);
String Similarity Matrix [i]←Syntactic V Sim ;
i ← i+1;
end
end
j ← 0;
for V DATA of Normalised Ontology Data Matrix do
for each in f ormation of VDATA do
LV sim Class←Language Sim Class
(NClassO1,NClassO2);
LV sim SubClass←Language Sim SubClass
(NSubClassO1,NSubClassO2);
LV sim Dis jointClass←Language Sim DisjointClass
(NDis jointClassO1,NDis jointClassO2);
LV sim DataProperties←Language Sim DataProperties
(NDataPropertiesO1,NDataPropertiesO2);
LV sim Ob jectProperties←Language Sim ObjectProperties
(NOb jectPropertiesO1,NOb jectPropertiesO2);
LV sim Individuals←Language Sim Individuals
(NIndividualsO1,NIndividualsO2);
LV sim ClassComments←Language Sim ClassComments
(NClassCommentsO1,NClassCommentsO2);
Language V Sim←GlobalConstructor(LV sim Class,
LV sim SubClass, LV sim Dis jointClass,
LV sim DataProperties, LV sim Ob jectProperties,
LV sim Individuals, LV sim ClassComments);
Language Similarity Matrix [j]←Language VSim ;
j ← j+1;
end
end
These techniques are applied to each pair of elements
stored in the input ontology data matrix. They in-
clude the pairs of classes, the pairs of subclasses,
the pairs of disjoint classes, the pairs of data proper-
Machine Learning for Ontology Alignment
671