
Burghardt, T. E., Popp, R., Helmreich, B., Reiter, T., B
¨
ohm,
G., Pitterle, G., and Artmann, M. (2021). Visibility
of various road markings for machine vision. Case
Studies in Construction Materials, 15:e00579.
Canny, J. (1986). A computational approach to edge de-
tection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 8(6):679–698.
Certad, N., Morales-Alvarez, W., and Olaverri-Monreal,
C. (2022). Road markings segmentation from lidar
point clouds using reflectivity information. In 2022
IEEE International Conference on Vehicular Elec-
tronics and Safety (ICVES), pages 1–6. IEEE.
Commission Internationale de l’Eclairage (2001). CIE
54.2-2001: Retroreflection: Definition and measure-
ment.
Douglas, D. H. and Peucker, T. K. (1973). Algorithms for
the reduction of the number of points required to rep-
resent a digitized line or its caricature. Cartograph-
ica: The International Journal for Geographic Infor-
mation and Geovisualization, 10(2):112–122.
for Testing, A. S. and Materials. (2005). Standard test
method for measurement of retroreflective pavement
marking materials with cen-prescribed geometry us-
ing a portable retroreflectometer (astm e 1710-05).
Garnett, H., Cohen, R., Pe’er, T., Lahav, Y., and Shashua,
A. (2019). 3d-lanenet: End-to-end 3d multiple lane
detection. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
2921–2930. IEEE.
Huang, Q. and Liu, J. (2021). Practical limitations of lane
detection algorithm based on hough transform in chal-
lenging scenarios. International Journal of Advanced
Robotic Systems, 18(2):17298814211008752.
Kanopoulos, N., Vasanthavada, N., and Baker, R. L. (1988).
Design of an image edge detection filter using the
sobel operator. IEEE Journal of solid-state circuits,
23(2):358–367.
Kiryati, N., Eldar, Y., and Bruckstein, A. M. (1991). A
probabilistic Hough transform. Pattern Recognition,
24(4):303–316.
Lee, S. and Cho, B. H. (2023). Evaluating pavement
lane markings in metropolitan road networks with a
vehicle-mounted retroreflectometer and ai-based im-
age processing techniques. Remote Sensing, 15(7).
Lee, S., Koh, E., Jeon, S.-i., and Kim, R. E. (2024).
Pavement marking construction quality inspection
and night visibility estimation using computer vision.
Case Studies in Construction Materials, 20:e02953.
Lee, S., Son, H., and Min, K. (2010). Implementation of
lane detection system using optimized hough trans-
form circuit. In 2010 IEEE Asia Pacific Conference
on Circuits and Systems, pages 406–409. IEEE.
Munir, F., Azam, S., Jeon, M., Lee, B.-G., and Pedrycz,
W. (2021). Ldnet: End-to-end lane marking detec-
tion approach using a dynamic vision sensor. IEEE
Transactions on Intelligent Transportation Systems,
23(7):9318–9334.
Neven, D., De Brabandere, B., Georgoulis, S., Proesmans,
M., and Van Gool, L. (2018). Towards end-to-end
lane detection: An instance segmentation approach. In
2018 IEEE Intelligent Vehicles Symposium (IV), pages
286–291. IEEE.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. IEEE Transactions on Systems,
Man, and Cybernetics, 9(1):62–66.
Otsu, N. et al. (1975). A threshold selection method from
gray-level histograms. Automatica, 11(285-296):23–
27.
Pan, X., Shi, J., Luo, P., Wang, X., and Tang, X. (2018).
Spatial as deep: Spatial CNN for traffic scene under-
standing. arXiv preprint arXiv:1712.06080.
Park, H. (2019). Lane detection algorithm based on
hough transform for high-speed self driving vehi-
cles. International Journal of Web and Grid Services,
15(3):240–250.
Poynton, C. (2012). Digital Video and HD: Algorithms and
Interfaces. Morgan Kaufmann Publishers.
Ramer, U. (1972). An iterative procedure for the polygonal
approximation of plane curves. Computer graphics
and image processing, 1(3):244–256.
Roman, F. J. B., Mendez, J. A. G., Gallo, A. M., Machin,
D. O. D. L., and Garcia, A. S. P. (2015). Method for
determining the luminance of traffic signs and device
for implementing same. US Patent 9,171,362.
Smadi, O., Souleyrette, R. R., Ormand, D. J., and Hawkins,
N. (2008). Pavement marking retroreflectivity: Anal-
ysis of safety effectiveness. Transportation Research
Record, 2056(1):17–24.
Sultana, S., Ahmed, B., Paul, M., Islam, M. R., and Ah-
mad, S. (2022). Vision-based robust lane detection
and tracking under different challenging environmen-
tal conditions. arXiv preprint arXiv:2210.10233.
Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for
gray and color images. In Proceedings of the 6th IEEE
International Conference on Computer Vision, pages
839–846.
TuSimple Inc. (2017). TuSimple Lane Detection Challenge.
https://github.com/TuSimple/tusimple-benchmark.
Accessed: [Month Day, Year].
Yang, Z., Shen, C., Shao, W., Xing, T., Hu, R., Xu, P., Chai,
H., and Xue, R. (2024). Ldtr: Transformer-based lane
detection with anchor-chain representation. Computa-
tional Visual Media, 10(4):753–769.
Yoo, J. H., Lee, S.-W., Park, S.-K., and Kim, D. H. (2017).
A robust lane detection method based on vanishing
point estimation using the relevance of line segments.
IEEE Transactions on Intelligent Transportation Sys-
tems, 18(12):3254–3266.
Youjin, T., Wei, C., Xingguang, L., and Lei, C. (2018). A
robust lane detection method based on vanishing point
estimation. Procedia computer science, 131:354–360.
Zhu, B., Song, C., Guo, Z., Zhang, Y., and Zhou, Z. (2021).
Effectiveness of active luminous lane markings on
highway at night: A driving simulation study. Sus-
tainability, 13(3):1043.
Zhu, S., Li, Z., Long, K., Zhou, S., and Zhou, Z. (2024).
Study of illumination and reflection performances on
light-colored pavement materials. Construction and
Building Materials, 456:139239.
GISTAM 2025 - 11th International Conference on Geographical Information Systems Theory, Applications and Management
94