the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1808 – 1822.
https://doi.org/10.18653/v1/2020.acl-main.164
Jakesch, M., Hancock, J. T., Naaman, M. (2023). Human
heuristics for AI-generated language are flawed.
Proceedings of the National Academy of Sciences 120,
e2208839120. https://doi.org/10.1073/
pnas.2208839120
Jawahar, G., Abdul-Mageed, M., Lakshmanan, L. V. S.
(2020). Automatic Detection of Machine Generated
Text: A Critical Survey. In Proceedings of the 28th
International Conference on Computational
Linguistics, pages 2296 – 2309.
Khan, W., Turab, M., Ahmad, W., Ahmad, S. H., Kumar,
K., Luo, B. (2022). Data Dimension Reduction makes
ML Algorithms efficient. In Proceedings of the 2022
International Conference on Emerging Technologies
in Electronics, Computing and Communication
(ICETECC), pages 1 – 7. https://doi.org/10.1109/
ICETECC56662.2022.10069527
Koike, R., Kaneko, M., Okazaki, N. (2024). OUTFOX:
LLM-Generated Essay Detection Through In-Context
Learning with Adversarially Generated Examples. In
AAAI 2024, Proceedings of 38th AAAI Conference on
Artificial Intelligence, pages 21259 – 21266.
https://doi.org/10.1609/aaai.v38i19.30120
Kumarage, T., Garland, J., Bhattacharjee, A.,
Trapeznikov, K., Ruston, S., Liu, H. (2023).
Stylometric Detection of AI-Generated Text in Twitter
Timelines. Preprint arXiv: 2303.03697.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.
(2019). RoBERTa: A Robustly Optimized BERT
Pretraining Approach. Preprint arXiv:1907.11692.
Moulik, R., Phutela, A., Sheoran, S., & Bhattacharya, S.
(2023). Accelerated Neural Network Training through
Dimensionality Reduction for High-Throughput
Screening of Topological Materials. Preprint arXiv:
arXiv:2308.12722.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Chintala, S. (2019). PyTorch: An
Imperative Style, High-Performance Deep Learning
Library. Advances in Neural Information Processing
Systems 32, pages 8024 – 8035.
Patel, P., Choukse, E., Zhang, C., Shah, A., Goiri, I.,
Maleki, S., Bianchini, R. (2024). Splitwise: Efficient
Generative LLM Inference Using Phase Splitting. In
ISCA 2024, Proceedings of the 51st ACM/IEEE
Annual International Symposium on Computer
Architecture, pages 118–132.
https://doi.org/10.1109/ISCA59077.2024.00019
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., &
Duchesnay, É. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research 12,
2825 – 2830.
Rojas-Simón, J., Ledeneva, Y., García-Hernández, R. A.
(2024). A Dimensionality Reduction Approach for
Text Vectorization in Detecting Human and Machine-
generated Texts. Computación y Sistemas 28, pages
1919 – 1929.
https://doi.org/10.13053/cys-28-4-5214
Singh, K. N., Devi, S. D., Devi, H. M., Mahanta, A. K.
(2022). A novel approach for dimension reduction
using word embedding: An enhanced text
classification approach. International Journal of
Information Management Data Insights 2, 100061.
https://doi.org/10.1016/J.JJIMEI.2022.100061
Tang, R., Chuang, Y.-N., Hu, X. (2024). The Science of
Detecting LLM-Generated Texts. Communications of
the ACM 67, pages 50 – 59.
The Jupyter Development Team. (2015). Project Jupyter.
Jupyter Notebook. Available at https://jupyter.org/.