o
(Proposed Method) 90% 82% Multi-class Yes Yes No
REFERENCES
Al-Ghuwairi, A., Sharrab, Y., Al-Fraihat, D., AlElaimat,
M., Alsarhan, A., & Algarni, A. (2023). Intrusion
detection in cloud computing based on time series
anomalies utilizing machine learning. Journal of Cloud
Computing Advances Systems and Applications, 12(1).
https://doi.org/10.1186/s13677-023-00491-x
Al-Obaidi, A., Ibrahim, A. A., & Khaleel, A. M. (2023).
The Effectiveness of Deploying Machine Learning
Techniques in Information Security to Detect Nine
Attacks: UNSW-NB15 Dataset as a Case Study.
Mathematical Modelling and Engineering Problems,
10(5). https://doi.org/10.18280/mmep.100507
Alsharaiah, M. A., Abualhaj, M., Baniata, L. H., Al-
Saaidah, A., Kharma, Q. M., & Al-Zyoud, M. M.
(2024). An innovative network intrusion detection
system (NIDS): Hierarchical deep learning model
based on Unsw-Nb15 dataset. International Journal of
Data and Network Science, 8(2), 709–722.
https://doi.org/10.5267/j.ijdns.2024.1.007
Azeroual, H., Belghiti, I. D., & Berbiche, N. (2022).
Analysis of UNSW-NB15 Datasets Using Machine
Learning Algorithms. In Lecture notes in networks and
systems (pp. 199–209). https://doi.org/10.1007/978-3-
031-02447-4_21
Darban, Z. Z., Webb, G. I., Pan, S., Aggarwal, C. C., &
Salehi, M. (2022). Deep Learning for Time Series
Anomaly Detection: A Survey. arXiv (Cornell
University). https://doi.org/10.48550/arxiv.2211.05244
HAI DataSet Baseline Model. (2021, August 2). DACON.
Retrieved December 25, 2024, from https://dacon.io/
competitions/official/235757/codeshare/3009?page=1
&dtype=recent.
Jouhari, M., Benaddi, H., & Ibrahimi, K. (2024). Efficient
intrusion detection: combining X2 feature selection
with CNN-BILSTM on the UNSW-NB15 dataset. 2024
11th International Conference on Wireless Networks
and Mobile Communications (WINCOM), 1–6.
https://doi.org/10.1109/wincom62286.2024.10658099.
Kasongo, S. M., & Sun, Y. (2020). Performance Analysis
of Intrusion Detection Systems Using a Feature
Selection Method on the UNSW-NB15 Dataset.
Journal of Big Data, 7(1). https://doi.org/10.1186/s40
537-020-00379-6
Marir, N., Wang, H., Feng, G., Li, B., & Jia, M. (2018).
Distributed Abnormal Behavior Detection Approach
based on Deep Belief Network and Ensemble SVM
using SPARK. IEEE Access, 6, 59657–59671.
https://doi.org/10.1109/access.2018.2875045
Moustafa, N., & Slay, J. (2015). UNSW-NB15: A
Comprehensive Data Set for Network Intrusion
Detection Systems (UNSW-NB15 Network Data Set).
In 2015 Military Communications and Information
Systems Conference (MilCIS) (pp. 1–6).
https://doi.org/10.1109/milcis.2015.7348942
Psychogyios, K., Bourou, S., Papadakis, A., Nikolaou, N.,
& Zahariadis, T. (2023). Time-Series Modeling for
Intrusion Detection Systems. In Lecture notes in
networks and systems (pp. 1–10). https://doi.org/10.10
07/978-3-031-38333-5_1
Smith, J. (2019). Deep Learning for Time Series
Classification: A review. Journal of Big Data, 6 no.1.
Su, T., Sun, H., Zhu, J., Wang, S., & Li, Y. (2020). BAT:
Deep Learning Methods on Network Intrusion
Detection Using NSL-KDD Dataset. IEEE Access, 8,
29575–29585. https://doi.org/10.1109/access.2020.297
2627
Sufi, F. (2024). A New Time Series Dataset for Cyber-
Threat Correlation, Regression and Neural-Network-
Based Forecasting. Information, 15(4), 199.
https://doi.org/10.3390/info15040199
Talukder, M. A., Islam, M. M., Uddin, M. A., Hasan, K. F.,
Sharmin, S., Alyami, S. A., & Moni, M. A. (2024).
Machine learning-based network intrusion detection for
big and imbalanced data using oversampling, stacking
feature embedding and feature extraction. Journal of
Big Data, 11(1). https://doi.org/10.1186/s40537-024-
00886-w