
tion Processing Systems, NIPS ’20, pages 1877–
1901, Red Hook, NY, USA. Curran Associates Inc.
https://dl.acm.org/doi/abs/10.5555/3495724.3495883.
Campos, J. G., De Almeida, V. P., De Armas, E. M.,
Da Silva, G. M. H., Corseuil, E. T., and Gonzalez,
F. R. (2023). INSIDE: An Ontology-based Data In-
tegration System Applied to the Oil and Gas Sector.
In Proceedings of the XIX Brazilian Symposium on
Information Systems, SBSI ’23, pages 94–101, New
York, NY, USA. Association for Computing Machin-
ery. https://doi.org/10.1145/3592813.3592893.
Chang, S., Wang, J., Dong, M., Pan, L., Zhu, H., Li, A. H.,
Lan, W., Zhang, S., Jiang, J., Lilien, J., Ash, S.,
Wang, W. Y., Wang, Z., Castelli, V., Ng, P., and Xi-
ang, B. (2023). Dr.Spider: A Diagnostic Evaluation
Benchmark towards Text-to-SQL Robustness. arXiv
preprint. https://doi.org/10.48550/arXiv.2301.08881.
Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez,
J. E., Stoica, I., and Xing, E. P. (2023). Vicuna:
An open-source chatbot impressing GPT-4 with 90%*
ChatGPT quality. https://lmsys.org/blog/2023-03-30-
vicuna/.
Coelho, G., Nascimento, E. S., Izquierdo, Y., Garc
´
ıa, G.,
Feij
´
o, L., Lemos, M., Garcia, R., de Oliveira, A.,
Pinheiro, J., and Casanova, M. (2024). Improving
the accuracy of text-to-sql tools based on large lan-
guage models for real-world relational databases. In
Strauss, C., Amagasa, T., Manco, G., Kotsis, G., Tjoa,
A., and Khalil, I., editors, Database and Expert Sys-
tems Applications, pages 93–107, Cham. Springer Na-
ture Switzerland. https://doi.org/10.1007/978-3-031-
68309-1 8.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv
preprint. https://doi.org/10.48550/arXiv.1810.04805.
Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B., and
Zhou, J. (2023). Text-to-SQL Empowered by Large
Language Models: A Benchmark Evaluation. arXiv
preprint. https://doi.org/10.48550/arXiv.2308.15363.
Lei, F., Chen, J., Ye, Y., Cao, R., Shin, D., Su, H., Suo,
Z., Gao, H., Hu, W., Yin, P., Zhong, V., Xiong, C.,
Sun, R., Liu, Q., Wang, S., and Yu, T. (2024). Spi-
der 2.0: Evaluating Language Models on Real-World
Enterprise Text-to-SQL Workflows. arXiv preprint.
https://doi.org/10.48550/arXiv.2411.07763.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., K
¨
uttler, H., Lewis, M., Yih, W.-t.,
Rockt
¨
aschel, T., Riedel, S., and Kiela, D. (2020).
Retrieval-augmented generation for knowledge-
intensive NLP tasks. In Proceedings of the 34th
International Conference on Neural Information
Processing Systems, NIPS ’20, pages 9459–9474,
Red Hook, NY, USA. Curran Associates Inc.
https://dl.acm.org/doi/abs/10.5555/3495724.3496517.
Li, J., Hui, B., Qu, G., Yang, J., Li, B., Li, B., Wang,
B., Qin, B., Geng, R., Huo, N., Zhou, X., Ma,
C., Li, G., Chang, K. C., Huang, F., Cheng, R.,
and Li, Y. (2024). Can LLM already serve as a
database interface? a big bench for large-scale
database grounded text-to-SQLs. In Proceed-
ings of the 37th International Conference on
Neural Information Processing Systems, Nips
’23, Red Hook, NY, USA. Curran Associates Inc.
https://dl.acm.org/doi/abs/10.5555/3666122.3667957.
Shi, L., Tang, Z., Zhang, N., Zhang, X., and Yang,
Z. (2024). A Survey on Employing Large Lan-
guage Models for Text-to-SQL Tasks. arXiv preprint.
https://doi.org/10.48550/arXiv.2407.15186.
Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to
sequence learning with neural networks. In Proceed-
ings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14,
pages 3104–3112, Cambridge, MA, USA. MIT Press.
https://dl.acm.org/doi/10.5555/2969033.2969173.
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter,
B., Xia, F., Chi, E. H., Le, Q. V., and Zhou, D.
(2024). Chain-of-thought prompting elicits reason-
ing in large language models. In Proceedings of
the 36th International Conference on Neural Infor-
mation Processing Systems, NIPS ’22, pages 24824–
24837, Red Hook, NY, USA. Curran Associates Inc.
https://dl.acm.org/doi/10.5555/3600270.3602070.
Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, I., Yao, Q., Roman, S., Zhang, Z., and
Radev, D. (2019). Spider: A Large-Scale Human-
Labeled Dataset for Complex and Cross-Domain Se-
mantic Parsing and Text-to-SQL Task. arXiv preprint.
https://doi.org/10.48550/arXiv.1809.08887.
ICEIS 2025 - 27th International Conference on Enterprise Information Systems
350