
the assistant’s role as a robust support system for Sys-
tems Engineering practitioners.
ACKNOWLEDGEMENTS
The authors thanks the Fondation de Recherche pour
l’Aeronautique et l’Espace (FRAE) for contributing
to the funding of the work presented in this paper. We
are also grateful, to Airbus Commercial Aircraft, Air-
bus Defense and Space, and the French ANR for con-
tributing to the funding of the EasyMOD project.
REFERENCES
(2015). ISO/IEC/IEEE International Standard - Systems
and Software Engineering – System Life Cycle Pro-
cesses.
Alarcia, R. M. G., Russo, P., Renga, A., and Golkar,
A. (2024). Bringing systems engineering models to
large language models: An integration of opm with
an llm for design assistants. In Proceedings of the
12th International Conference on Model-Based Soft-
ware and Systems Engineering-MBSE-AI Integration,
pages 334–345.
Andrew, G. (2023). Future consideration of generative arti-
ficial intelligence (ai) for systems engineering design.
26th National Defense Industrial Association Systems
Engineering Conference.
Arora, C., Grundy, J., and Abdelrazek, M. (2024). Advanc-
ing requirements engineering through generative ai:
Assessing the role of llms. In Generative AI for Effec-
tive Software Development, pages 129–148. Springer.
Bader, E., Vereno, D., and Neureiter, C. (2024). Facilitat-
ing user-centric model-based systems engineering us-
ing generative ai. In MODELSWARD.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. (2020). Language models are few-
shot learners. Advances in neural information pro-
cessing systems, 33:1877–1901.
C
´
amara, J., Troya, J., Burgue
˜
no, L., and Vallecillo, A.
(2023). On the assessment of generative ai in model-
ing tasks: an experience report with chatgpt and uml.
Software and Systems Modeling, 22(3):781–793.
Chami, M., Abdoun, N., and Bruel, J.-M. (2022). Artifi-
cial intelligence capabilities for effective model-based
systems engineering: A vision paper. INCOSE Inter-
national Symposium, 32(1):1160–1174.
Chami, M. and Bruel, J.-M. (2018). A survey on mbse adop-
tion challenges. In INCOSE EMEA Sector Systems
Engineering Conference (INCOSE EMEASEC 2018).
Wiley Interscience Publications.
du Plooy, C. and Oosthuizen, R. (2023). Ai usefulness
in systems modelling and simulation: gpt-4 applica-
tion. South African Journal of Industrial Engineering,
34(3):286–303.
Fabien, B. (2023). Exploration AI and MBSE: Use Cases
in Aircraft Design. INCOSE Next AI Explorer.
Fuchs, J., Helmerich, C., and Holland, S. (2024). Trans-
forming system modeling with declarative methods
and generative ai. In AIAA SCITECH 2024 Forum,
page 1054.
INCOSE (2007). Systems Engineering Vision 2020. Inter-
national Council on Systems Engineering (INCOSE),
2nd edition.
Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y.
(2022). Large language models are zero-shot reason-
ers. Advances in neural information processing sys-
tems, 35:22199–22213.
Lecun, Y., Dess
`
ı, R., Lomeli, M., Nalmpantis, C., Pa-
sunuru, R., Raileanu, R., Rozi
`
ere, B., Schick, T.,
Dwivedi-Yu, J., Celikyilmaz, A., et al. (2023). Aug-
mented language models: a survey. arXiv preprint
arXiv:2302.07842.
Qiao, S., Ou, Y., Zhang, N., Chen, X., Yao, Y., Deng, S.,
Tan, C., Huang, F., and Chen, H. (2022). Reason-
ing with language model prompting: A survey. arXiv
preprint arXiv:2212.09597.
Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. (2021). Zero-shot
text-to-image generation. In International Conference
on Machine Learning, pages 8821–8831. PMLR.
Reitenbach, S., Siggel, M., and Bolemant, M. (2024). En-
hanced workflow management using an artificial in-
telligence chatbot. In AIAA SCITECH 2024 Forum,
page 0917.
Schr
¨
ader, E., Bernijazov, R., Foullois, M., Hillebrand, M.,
Kaiser, L., and Dumitrescu, R. (2022). Examples of
ai-based assistance systems in context of model-based
systems engineering. In 2022 IEEE International
Symposium on Systems Engineering (ISSE), pages 1–
8.
SELive (2023). Artificial intelligence (ai) in model-
based systems engineering. https://www.selive.de/ai-
in-mbse/ [last visited:2023-11-27].
Tikayat Ray, A., Cole, B. F., Pinon Fischer, O. J., Bhat,
A. P., White, R. T., and Mavris, D. N. (2023). Ag-
ile methodology for the standardization of engineering
requirements using large language models. Systems,
11(7).
Timperley, L., Berthoud, L., Snider, C., and Tryfonas, T.
(2024). Assessment of large language models for use
in generative design of model based spacecraft system
architectures. Available at SSRN 4823264.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30.
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. (2022). Chain-of-
thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing
Systems, 35:24824–24837.
MBSE-AI Integration 2025 - 2nd Workshop on Model-based System Engineering and Artificial Intelligence
394