
ing approach for the service integration of iot systems.
Cluster Computing, 23(3):1937–1954.
Bai, H., Breuel, T. M., et al. (2019). Onnx: Open neural
network exchange. GitHub Repository. Available at:
https://onnx.ai/.
Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R.,
K
¨
otter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., and
Wiswedel, B. (2009). Knime: The konstanz informa-
tion miner. In Data Analysis, Machine Learning and
Applications, pages 319–326. Springer.
Bhattacharjee, A., Barve, Y., Khare, S., Bao, S., Kang, Z.,
Gokhale, A., and Damiano, T. (2019). Stratum: A
bigdata-as-a-service for lifecycle management of iot
analytics applications. In 2019 IEEE International
Conference on Big Data (Big Data), pages 1607–
1612. IEEE.
Bredereke, J., Morin, B., et al. (2013). Models@runtime
to support dynamic adaptation. Software and Systems
Modeling, 12:159–168.
Chollet, F. et al. (2015). Keras.
Cruz-N
´
ajera, M. A., Trevi
˜
no-Berrones, M. G., Ponce-
Flores, M. P., Ter
´
an-Villanueva, J. D., Cast
´
an-Rocha,
J. A., Ibarra-Mart
´
ınez, S., Santiago, A., and Laria-
Menchaca, J. (2022). Short time series forecasting:
Recommended methods and techniques. Symmetry,
14(6):1231.
Da Silva, A. R. (2015). Model-driven engineering: A sur-
vey supported by the unified conceptual model. Com-
puter Languages, Systems & Structures, 43:139–155.
Guazzelli, A., Zeller, M., Lin, W.-C., and Williams, G.
(2009). Pmml: An open standard for sharing models.
The R Journal, 1(1):60–65.
Harrand, N., Fleurey, F., Morin, B., and Husa, K. (2016).
Thingml: A language and code generation frame-
work for heterogeneous targets. Proceedings of the
ACM SIGPLAN International Conference on Model
Driven Engineering Languages and Systems (MOD-
ELS), pages 125–135.
Hartmann, T., Moawad, A., Fouquet, F., and Le Traon, Y.
(2019). The next evolution of mde: a seamless in-
tegration of machine learning into domain modeling.
Software & Systems Modeling, 18(2):1285–1304.
Hartsell, C., Mahadevan, N., Ramakrishna, S., Dubey, A.,
Bapty, T., Johnson, T., Koutsoukos, X., Sztipanovits,
J., and Karsai, G. (2019). Model-based design for cps
with learning-enabled components. In Proceedings of
the Workshop on Design Automation for CPS and IoT,
pages 1–9.
Jesus, G., Mardani, Z., Alves, E., and Oliveira, A. (2025).
Using deep learning for tejo river flow forecasting.
Submitted to Sensors. Under review.
Kirchhof, J. C., Kusmenko, E., Ritz, J., Rumpe, B., Moin,
A., Badii, A., G
¨
unnemann, S., and Challenger, M.
(2022). Mde for machine learning-enabled software
systems: a case study and comparison of montianna
& ml-quadrat. In Proceedings of the 25th Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems: Companion Proceedings, MOD-
ELS ’22, page 380–387, New York, NY, USA. Asso-
ciation for Computing Machinery.
Mardani Korani, Z., Moin, A., Rodrigues da Silva, A., and
Ferreira, J. C. (2023). Model-driven engineering tech-
niques and tools for machine learning-enabled iot ap-
plications: A scoping review. Sensors, 23(3).
Meli
´
a, S., Nasabeh, S., Luj
´
an-Mora, S., and Cachero,
C. (2021). Mosiot: Modeling and simulating iot
healthcare-monitoring systems for people with dis-
abilities. International Journal of Environmental Re-
search and Public Health, 18(12):6357.
Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and
Euler, T. (2006). Rapidminer: An open source sys-
tem for knowledge discovery in large data sets. In
Proceedings of the NIPS ML Open Source Software
Workshop.
Minka, T. P., Winn, J., Guiver, J., and Knowles, D. (2018).
Infer.net: A framework for running bayesian inference
in graphical models. Journal of Machine Learning
Research, 18:1–5.
Moin, A. (2021). Data analytics and machine learning
methods, techniques and tool for model-driven engi-
neering of smart iot services. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages
287–292.
Moin, A., Challenger, M., Badii, A., and G
¨
unnemann, S.
(2022a). A model-driven approach to machine learn-
ing and software modeling for the iot. Software and
Systems Modeling, 21(3):987–1014.
Moin, A., Mituca, A., Challenger, M., Badii, A., and
G
¨
unnemann, S. (2022b). Ml-quadrat & driotdata: a
model-driven engineering tool and a low-code plat-
form for smart iot services. In Proceedings of the
ACM/IEEE 44th International Conference on Soft-
ware Engineering: Companion Proceedings, ICSE
’22, page 144–148, New York, NY, USA. Association
for Computing Machinery.
Moin, A., R
¨
ossler, S., and G
¨
unnemann, S. (2018).
Thingml+: Augmenting model-driven software engi-
neering for the internet of things with machine learn-
ing. In Proceedings of MODELS 2018 Workshops,
Copenhagen, Denmark, October, 14, 2018, volume
2245 of CEUR Workshop Proceedings, pages 521–
523. CEUR-WS.org.
Moin, A., R
¨
ossler, S., Sayih, M., and G
¨
unnemann, S.
(2020). From things’ modeling language (thingml) to
things’ machine learning (thingml2). MODELS ’20,
New York, NY, USA. ACM.
Morin, B., Barais, O., Fleurey, F., et al. (2016). Heads: A
holistic approach for the development of distributed
heterogeneous and adaptive systems. In International
Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 92–101. Springer.
Open Data Group (2016). Portable format for analytics
(pfa). Available at: http://dmg.org/pfa/.
System, P. N. W. R. I. Snirh portal. https://snirh.
apambiente.pt/snirh/. Accessed on [2024].
UCI Machine Learning Repository. Individual
household electric power consumption dataset.
https://archive.ics.uci.edu/ml/datasets/individual+
household+electric+power+consumption. Accessed:
[2024].
From ML2 to ML2+: Integrating Time Series Forecasting in Model-Driven Engineering of Smart IoT Applications
465