Anton, K., & Oleg, K. (2023). MBSE and Safety Lifecycle
of AI-enabled systems in transportation. International
Journal of Open Information Technologies, 11(8), 100-
104.
Torkjazi, M., & Raz, A. K. (2024, July). Model‐Based
Systems Engineering (MBSE) Methodology for
Integrating Autonomy into a System of Systems Using
the Unified Architecture Framework. In INCOSE
International Symposium (Vol. 34, No. 1, pp. 1051-
1070).
Karali, H., Inalhan, G., & Tsourdos, A. (2024). AI-Driven
Multidisciplinary Conceptual Design of Unmanned
Aerial Vehicles. In AIAA SCITECH 2024 Forum.
Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital twin:
Values, challenges and enablers from a modeling
perspective. IEEE access, 8, 21980-22012.
Ian, G., Yoshua, B., & Aaron, C. (2017). Deep learning:
Adaptive computation and machine learning.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.
Wang, J., & Chen, Y. (2023). Introduction to transfer
learning: algorithms and practice. Springer Nature.
Zhang, K., Yang, Z., & Başar, T. (2021). Multi-agent
reinforcement learning: A selective overview of
theories and algorithms. Handbook of reinforcement
learning and control, 321-384.
Hao, Z., Liu, S., Zhang, Y., Ying, C., Feng, Y., Su, H., &
Zhu, J. (2022). Physics-informed machine learning: A
survey on problems, methods and applications. arXiv
preprint arXiv:2211.08064.
Raz, A. K., Blasch, E. P., Guariniello, C., & Mian, Z. T.
(2021). An overview of systems engineering challenges
for designing AI-enabled aerospace systems. In AIAA
Scitech 2021 Forum (p. 0564).
Blasch, E., & Pokines, B. (2019, July). Analytical science
for autonomy evaluation. In 2019 IEEE National
Aerospace and Electronics Conference (NAECON) (pp.
598-605). IEEE.
Alandihallaj, M. A., Ramezani, M., & Hein, A. M. (2024).
MBSE-Enhanced LSTM Framework for Satellite
System Reliability and Failure Prediction.
In MODELSWARD (pp. 349-356).
Chami, M., Abdoun, N., & Bruel, J. M. (2022, July).
Artificial Intelligence Capabilities for Effective Model‐
Based Systems Engineering: A Vision Paper.
In INCOSE International Symposium (Vol. 32, No. 1,
pp. 1160-1174).
Chen, M., & Bhada, S. V. (2022, July). Converting natural
language policy article into MBSE model. In INCOSE
International Symposium (Vol. 32, pp. 73-81).
Chami, M., Zoghbi, C., & Bruel, J. M. (2019). A first step
towards AI for MBSE: generating a part of SysML
models from text using AI. A First Step towards AI.
Johns, B., Carroll, K., Medina, C., Lewark, R., & Walliser,
J. (2024, July). AI Systems Modeling Enhancer (AI‐
SME): Initial Investigations into a ChatGPT‐enabled
MBSE Modeling Assistant. In INCOSE International
Symposium (Vol. 34, No. 1, pp. 1149-1168).
Rudolph, S. (2024, February). On Some Artificial
Intelligence Methods in the V-Model of Model-Based
Systems Engineering. In MODELSWARD (pp. 386-
393).
Wang, C., Fan, H., & Qiang, X. (2023). A Review of
Uncertainty-Based Multidisciplinary Design
Optimization Methods Based on Intelligent
Strategies. Symmetry, 15(10), 1875.
Sisk, S., Yan, G., & Du, X. (2023). Surrogate-based
Optimal Multidisciplinary Takeoff Trajectory Design
for Electric Drones. In AIAA AVIATION 2023 Forum (p.
3594).
Orlova, E. V. (2022). Design technology and AI-based
decision making model for digital twin
engineering. Future Internet, 14(9), 248.
Bariah, L., & Debbah, M. (2024). The interplay of ai and
digital twin: Bridging the gap between data-driven and
model-driven approaches. IEEE Wireless
Communications.
Groshev, M., Guimarães, C., Martín-Pérez, J., & de la Oliva,
A. (2021). Toward intelligent cyber-physical systems:
Digital twin meets artificial intelligence. IEEE
Communications Magazine, 59(8), 14-20.
Karali, H., Inalhan, G., & Tsourdos, A. (2023). AI-Based
Multifidelity Surrogate Models to Develop Next
Generation Modular UCAVs. In AIAA SCITECH 2023
Forum (p. 0670).
Ren, Y., Qi, J., Cheng, Y., Wang, J., & Alfarraj, O. (2020).
Digital continuity guarantee approach of electronic
record based on data quality theory. Computers,
Materials & Continua, 63(3), 1471-1483.
Fouda, M., Willrodt, L., Almeida, H., Cortez, J., Hussein,
O., Castaneda, F., & Brook, R. (2024). AN MBSE
ENABLED MDAO APPROACH FOR THE
CONCEPTUAL DEVELOPMENT OF COMPLEX
SYSTEMS.
Wu, Y., Zhou, L., Zheng, P., Sun, Y., & Zhang, K. (2022).
A digital twin-based multidisciplinary collaborative
design approach for complex engineering product
development. Advanced Engineering Informatics, 52,
101635.
Lopez, V., & Akundi, A. (2022, April). A conceptual
model-based systems engineering (mbse) approach to
develop digital twins. In 2022 ieee international
systems conference (syscon) (pp. 1-5). IEEE.
Bordeleau, F., Combemale, B., Eramo, R., Van Den Brand,
M., & Wimmer, M. (2020). Towards model-driven
digital twin engineering: Current opportunities and
future challenges. In Systems Modelling and
Management: First International Conference, ICSMM
2020, Bergen, Norway, June 25–26, 2020, Proceedings
1 (pp. 43-54). Springer International Publishing.
Purohit, S., & Madni, A. M. (2022). Employing Digital
Twins Within MBSE: Preliminary Results and Findings.
In Recent Trends and Advances in Model Based
Systems Engineering (pp. 35-44). Cham: Springer
International Publishing.
Bouhali, I., Idasiak, V., Martinez, J., Mhenni, F., Choley, J.
Y., Palladino, L., & Kratz, F. (2024, October).
Leveraging Aerospace Industry Digital Transformation:
Bridging the gap from MBSE to MBD with Digital
Twin Simulation for Mechatronic Systems