Cuzzocrea, A. (2006). Improving Range-SUM Query
Evaluation on Data Cubes via Polynomial
Approximation. Data and Knowledge Engineering
56(2), pp. 85-121.
Cuzzocrea, A. (2009). CAMS: OLAPing Multidimensional
Data Streams Efficiently. In: DaWaK 2009, 11th
International Conference on Data Warehousing and
Knowledge Discovery, pp. 48-62.
Cuzzocrea, A. (2023). Big OLAP Data Cube Compression
Algorithms in Column-Oriented Cloud/Edge Data
Infrastructures. In: BigMM 2023, 9th IEEE
International Conference on Multimedia Big Data, pp.
1-2.
Cuzzocrea, A., Furfaro, F., Mazzeo, G.M., & Saccà D.
(2004). A Grid Framework for Approximate Aggregate
Query Answering on Summarized Sensor Network
Readings. In: OTMW 2004, 2004 On the Move to
Meaningful Internet Systems International Workshops,
pp.144-153.
Cuzzocrea, A., Saccà, D., & Serafino, P. (2007). Semantics-
Aware Advanced OLAP Visualization of
Multidimensional Data Cubes. International Journal of
Data Warehousing and Mining 3(4), pp. 1-30.
Cuzzocrea, A., Song, I.Y., & Davis, K.C. (2011). Analytics
over Large-Scale Multidimensional Data: The Big Data
Revolution! In: DOLAP 2011, 14th ACM International
Workshop on Data Warehousing and OLAP, pp. 101-
104.
Chen, X., Ma, C., Zhao, C., & Luo, Y. (2024). UAV
Classification Based on Deep Learning Fusion of
Multidimensional UAV Micro-Doppler Image
Features. IEEE Geoscience and Remote Sensing Letters
21, pp. 1-5.
Ding, G., Geng, S., Jiao, Q., & Jiang, T. (2024). AGDM:
Adaptive Granularity and Dimension Decoupling for
Multidimensional Time Series Classification. In: ICIC
2024, 13th International Conference on Intelligent
Computing, pp. 405-416.
Elborough, L., Taylor, D., & Humphries, M. (2024). A
Novel Application of Shapley Values for Large
Multidimensional Time-Series Data: Applying
Explainable AI to a DNA Profile Classification Neural
Network. CoRR abs/2409.18156.
Gray, J., Chaudhuri, S., Bosworth, A., Layman, A.,
Reichart, D., Venkatrao, M., Pellow, F., & Pirahesh, H.
(1997). Data Cube: A Relational Aggregation Operator
Generalizing Group-by, Cross-Tab, and Sub Totals.
Data Mining and Knowledge Discovery 1(1), pp. 29-53.
Hassan, C.A.U., Khan, M.S., & Shah, M.A. (2018).
Comparison of Machine Learning Algorithms in Data
Classification. In: ICAC 2018, 24th IEEE International
Conference on Automation and Computing, pp. 1-6.
Hussenet, L., Boucetta, C., & Herbin, M. (2024). Spanning
Thread: A Multidimensional Classification Method for
Efficient Data Center Management. In: I4CS 2024, 24th
International Conference on Innovations for
Community Services, pp. 219-234.
Khan, A.A.R., & Nisha, S.S. (2024). Efficient Hybrid
Optimization-Based Feature Selection and
Classification on High Dimensional Dataset.
Multimedia Tools and Applications 83(20), pp. 58689-
58727.
Kim, Y., Camacho, D., & Choi, C. (2024). Real-Time
Multi-Class Classification of Respiratory Diseases
Through Dimensional Data Combinations. Cognitive
Computation 16(2), pp. 776-787.
Lin, W.Y., & Kuo, I.C. (2004). A Genetic Selection
Algorithm for OLAP Data Cubes. Knowledge and
Information Systems 6(1), pp. 83-102.
Molina, L.C., Belanche, L., & Nebot, A. (2002). Feature
Selection Algorithms: A Survey and Experimental
Evaluation. In: ICDM 2002, IEEE International
Conference on Data Mining, pp. 306-313.
Mutersbaugh, J., Lam, V., Linguraur, M.G., & Anwar, S.M.
(2023). Epileptic Seizure Classification using
Multidimensional EEG Spectrograms. In: SIPAIM
2023, 19th IEEE International Symposium on Medical
Information Processing and Analysis, pp. 1-4.
Nodarakis, N., Sioutas, S., Tsoumakos, D., Tzimas, G., &
Pitoura, E. (2014). Rapid AkNN Query Processing for
Fast Classification of Multidimensional Data in the
Cloud. CoRR abs/1402.7063.
Shi, Y., Ye, H.J., Man, D., Han, X., Zhan, D.C., & Jiang,
Y. (2025). Revisiting Multi-Dimensional Classification
from a Dimension-Wise Perspective. Frontiers of
Computer Science 19(1), art. 191304.
Song, C.H., Kim, J.S., Kim, J.M., & Pan, S.B. (2024).
Stress Classification Using ECGs Based on a Multi-
Dimensional Feature Fusion of LSTM and Xception.
IEEE Access 12, pp. 19077-19086.
Sorzano, C.O.S., Vargas, J., & Pascual-Montano, A.P.
(2014). A Survey of Dimensionality Reduction
Techniques. CoRR abs/1403.2877.
Talebi, Z.A., Chirkova, R., Fathi, Y., & Stallmann, M.F.
(2008). Exact and Inexact Methods for Selecting Views
and Indexes for OLAP Performance Improvement. In:
EDBT 2008, 11th ACM International Conference on
Extending Database Technology, pp. 311-322.
Tang, J., Chen, W., Wang, K., Zhang, Y., & Liang, D.
(2024). Probability-Based Label Enhancement for
Multi-Dimensional Classification. Information
Sciences 653, art. 119790.
Tutsoy, O., & Koç, G.G. (2024). Deep Self-Supervised
Machine Learning Algorithms with Novel Feature
Elimination and Selection Approaches for Blood Test-
Based Multi-Dimensional Health Risks Classification.
BMC Bioinformatics 25(1), art. 103.
Wang, S., & Cao, G. (2023). Multiclass Classification for
Multidimensional Functional Data Through Deep
Neural Networks. CoRR abs/2305.13349.
Yu, B., Cuzzocrea, A., Jeong, D.H., & Maydebura, S.
(2012). On Managing Very Large Sensor-Network
Data Using Bigtable. In: CCGrid 2012, 12th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, pp. 918-922.