Bafna, P., Pramod, D., & Vaidya, A. (2016). Document
clustering: TF-IDF approach. In 2016 International
Conference on Electrical, Electronics, and
Optimization Techniques (ICEEOT) (pp. 61-66). IEEE.
http://dx.doi.org/10.1109/ICEEOT.2016.7754750
Blei, D. M., & Smyth, P. (2017). Science and data science.
Proceedings of the National Academy of Sciences of
the United States of America, 114(33), 8689–8692.
https://doi.org/10.1073/pnas.1702076114
Bowlick, F. J., & Wright, D. J. (2018). Digital Data-Centric
Geography: Implications for Geography’s Frontier. The
Professional Geographer, 70(4), 687–694.
https://doi.org/10.1080/00330124.2018.1443478
Brady, H. E. (2019). The challenge of big data and data
science. Annual Review of Political Science, 22(1),
297–323. https://doi.org/10.1146/annurev-polisci-
090216-023229
Brunner, R., & Kim, E. (2016). Teaching data science.
Procedia Computer Science, 80, 1947–1956.
https://doi.org/10.1016/j.procs.2016.05.513
Cao, L. (2017). Data science: A comprehensive overview.
ACM Computing Surveys, 50(3), 1–42.
https://doi.org/10.1145/3076253
Cao, L. (2018). Data Science Thinking: the next scientific,
technological and economic revolution.
https://www.amazon.com/Data-Science-Thinking-
Scientific-Technological/dp/3319950916
Carniel, A., & Schneider, M. (2021). A Survey of Fuzzy
Approaches in Spatial Data Science. In 2021 IEEE
International Conference on Fuzzy Systems (FUZZ-
IEEE), 1-6. IEEE. https://doi.org/10.1109/
FUZZ45933.2021.9494437
Chen, K., Zhang, Z., Long, J., & Zhang, H. (2016). Turning
from TF-IDF to TF-IGM for term weighting in text
classification. Expert Systems with Applications, 66,
245-260. https://doi.org/10.1016/j.eswa.2016.09.009
Cleveland, W. S. (2001). Data Science: an Action Plan for
Expanding the Technical Areas of the Field of
Statistics. International Statistical Review, 69(1), 21–
26. https://doi.org/10.1111/j.1751-
5823.2001.tb00477.x
Davenport, T. & Patil, T. (2012). Data scientist: The sexiest
job of the 21st century. Harvard business review,
90(10), 70-76. https://hbr.org/2012/10/data-scientist-
the-sexiest-job-of-the-21st-century
Dhar, V. (2013). Data science and prediction.
Communications of the ACM, 56(12), 64–73.
https://doi.org/10.1145/2500499
Donoho, D. L. (2017). 50 years of data science. Journal of
Computational and Graphical Statistics, 26(4), 745–
766. https://doi.org/10.1080/10618600.2017.1384734
Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996).
From data mining to knowledge discovery in databases.
Ai Magazine, 17(3), 37–54. https://doi.org/10.1609/
aimag.v17i3.1230
Ferdinands, G., Schram, R., de Bruin, J., Bagheri, A.,
Oberski, D. L., Tummers, L., & van de Schoot, R.
(2020). Active learning for screening prioritization in
systematic reviews - A simulation study.
https://doi.org/10.31219/osf.io/w6qbg
Hicks, S. C., & Irizarry, R. A. (2018). A guide to teaching
data science. The American Statistician, 72(4), 382–
391. https://doi.org/10.1080/00031305.2017.1356747
Jiang, H., & Chen, C. (2021). Data Science Skills and
Graduate Certificates: A Quantitative Text analysis.
Journal of Computer Information Systems, 62(3), 463–
479. https://doi.org/10.1080/08874417.2020.1852628
Jurafsky, D., & Martin, J. H. (2019). Speech and Language
Processing. Pearson.
Kantardzic, M. (2019). Data mining. https://doi.org/
10.1002/9781119516057
Kelleher, J., & Tierney, B. (2018). Data science. MIT Press.
Kumar, S., & Mohbey, K. K. (2022). A review on big data
based parallel and distributed approaches of pattern
mining. Journal of King Saud University - Computer
and Information Sciences, 34(5), 1639–1662.
https://doi.org/10.1016/j.jksuci.2019.09.006
Larose, D., & Larose, C. (2014). Discovering knowledge in
data: an introduction to data mining (Vol. 4). John
Wiley & Sons.
Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C.,
Hernández-Orallo, J., Kull, M., Lachiche, N., Ramírez-
Quintana, M. J., & Flach, P. A. (2021). CRISP-DM
Twenty years Later: From data mining processes to data
science trajectories. IEEE Transactions on Knowledge
and Data Engineering, 33(8), 3048–3061.
https://doi.org/10.1109/tkde.2019.2962680
Muller, M., Lange, I., Wang, D., Piorkowski, D., Tsay, J.,
Liao, Q. V., ... & Erickson, T. (2019). How data science
workers work with data: Discovery, capture, curation,
design, creation. In Proceedings of the 2019 CHI
conference on human factors in computing systems, 1-
15. https://doi.org/10.1145/3290605.3300356
Naur, P. (1966). The science of datalogy. Communications
of the ACM, 9(7), 485. https://doi.org/10.1145/
365719.366510
Ólafsdóttir, R., & Tverijonaite, E. (2018). Geotourism: A
Systematic Literature Review. Geosciences, 8(7), 234.
https://doi.org/10.3390/geosciences8070234
O’Mara-Eves, A., Thomas, J., McNaught, J. et al. (2015).
Using text mining for study identification in systematic
reviews: a systematic review of current approaches.
Systematic Reviews, 4, 5. https://doi.org/10.1186/
2046-4053-4-5
Palomino, J., Muellerklein, O., & Kelly, M. (2017). A
review of the emergent ecosystem of collaborative
geospatial tools for addressing environmental
challenges. Computers, Environment and Urban
Systems, 65, 79–92. https://doi.org/10.1016/
j.compenvurbsys.2017.05.003
Pickering, C., Grignon, J., Steven, R., Guitart, D., & Byrne,
J. (2014). Publishing not perishing: how research
students transition from novice to knowledgeable using
systematic quantitative literature reviews. Studies in
Higher Education, 40(10), 1756–1769.
https://doi.org/10.1080/03075079.2014.914907
Provost, F., & Fawcett, T. (2013). Data Science and its
Relationship to Big Data and Data-Driven Decision
Making. Big Data, 1(1), 51–59. https://doi.org/
10.1089/big.2013.1508