ACKNOWLEDGEMENTS
This work is undertaken by the Horizon Europe
TELEMETRY (Trustworthy mEthodologies, open
knowLedgE & automated tools for sEcurity Testing
of IoT software, haRdware & ecosYstems) project,
supported by EC funding under grant number
101119747, and UKRI under grant number
10087006.
REFERENCES
Buchheit, M., Hirsch, F., Martin, R. A., Bemmel, V.,
Espinosa, A. J., Zarkout, B., Hart, C. F., & Tseng, M.
(2021). The Industrial Internet of Things
Trustworthiness Framework Foundations [Review of
The Industrial Internet of Things Trustworthiness
Framework Foundations]. An Industrial Internet
Consortium Foundational Document, Version V1.00.
https://www.iiconsortium.org/pdf/Trustworthiness_Fra
mework_Foundations.pdf
Brian Caswell, Jay Beale, Andrew Baker: Snort Intrusion
Detection and Prevention Toolkit. Elsevier Science &
Technology; 17. Dezember 2006, ISBN 978-1-59749-
099-3.
CVE Program Mission, https://www.cve.org/. Retrieved
2025-01-13.
M. Fuentes-García, J. Camacho and G. Maciá-Fernández,
"Present and Future of Network Security Monitoring,"
in IEEE Access, vol. 9, pp. 112744-112760, 2021, doi:
10.1109/ACCESS.2021.3067106
Huang, C., Xiong, J., and Peng, Z. (2012). “Applied research
on snort intrusion detection model in the campus
network,” in IEEE Symposium on Robotics and
Applications (ISRA).
Kamil Imtiaz, What is Security Posture? August 06, 2023.
https://www.crowdstrike.com/en-us/cybersecurity-
101/exposure-management/security-posture/
ISO/IEC 27000:2018. Information technology — Security
techniques — Information security management
systems — Overview and vocabulary.
https://www.iso.org/standard/ 73906.html
Pasindu Kuruppuarachchi, Rea, S., & McGibney, A. (2024).
Trust and Security Analyzer for Digital Twins.
Communications in Computer and Information Science,
278–290. https://doi.org/10.1007/978-3-031-51643-
6_20
Scott M. Lundberg and Su-In Lee. 2017. A unified approach
to interpreting model predictions. In Proceedings of the
31st International Conference on Neural Information
Processing Systems (NIPS'17). Curran Associates Inc.,
Red Hook, NY, USA, 4768–4777.
https://dl.acm.org/doi/10.5555/3295222.3295230
Miller, Barton P., Lars Fredriksen, and Bryan So. "An
empirical study of the reliability of UNIX utilities."
Communications of the ACM 33.12 (1990): 32-44.
Omerovic, A. Natvig, M., Tardy, I. C. R., "Privacy
Scorecard – Refined Design and Results of a Trial on a
Mobility as a Service Example". In proceedings of 27th
European Safety and Reliability Conference (ESREL'
2017) June 18-22; Portoroz, Slovenia
TA Özer, Ö., Zheng, Y., & Ren, Y. (2011). A Tale of Two
Countries: Trust and Trustworthiness in China and the
U.S. SSRN Electronic Journal. https://doi.org/10.2139/
ssrn.1961774
S. C. Phillips, S. Taylor, M. Boniface, S. Modafferi and M.
Surridge. (2024). "Automated Knowledge-Based
Cybersecurity Risk Assessment of Cyber-Physical
Systems," in IEEE Access, vol. 12, pp. 82482-82505,
2024, doi: 10.1109/ACCESS.2024.3404264.
Rey, V., Sánchez, P. M. S., Celdrán, A. H., & Bovet, G.
Federated learning for malware detection in IoT devices.
Computer Networks, 2022
J. Shao, H. Wei, Q. Wang and H. Mei, "A Runtime Model
Based Monitoring Approach for Cloud," 2010 IEEE 3rd
International Conference on Cloud Computing, Miami,
FL, USA, 2010, pp. 313-320, doi: 10.1109/
CLOUD.2010.31.
R. Shirey, Internet Security Glossary, Version 2. Network
Working Group Request for Comments: 4949, August
2007. https://datatracker.ietf.org/doc/html/rfc4949
Taylor, S.; Jaatun, M.; Mc Gibney, A.; Seidl, R.;
Hrynchenko, P.; Prosvirin, D. and Mancilla, R. (2024a).
A Framework Addressing Challenges in Cybersecurity
Testing of IoT Ecosystems and Components. In
Proceedings of the 9th International Conference on
Internet of Things, Big Data and Security, ISBN 978-
989-758-699-6, ISSN 2184-4976, pages 226-234.
S. Taylor; P. Melas; M. Jaatun; A. Omerovic; R. Seidl N.
Goetze; J. Kuhr; D. Prosvirin; M. Leone; P. De Lutiis;
A. Kuznetsov; A. Gritskevich; G. Triantafyllou; A.
Mpantis; O. Garcia Perales; B. Wenning; S. Duttagupta
(2024b). Toward Cybersecurity Testing and Monitoring
of IoT Ecosystems. (Preprint). https://arxiv.org/abs/
2502.12837
Vinayakumar, R., Soman, K. P., & Prabaharan
Poornachandran, N. (2019). Evaluating shallow and
deep networks for network intrusion detection systems
in cybersecurity. Future Generation Computer Systems,
107, 13-26.
Wang, Ruowen & Ning, Peng & Xie, Tao & Chen, Quan.
(2013). MetaSymploit: day-one defense against script-
based attacks with security-enhanced symbolic analysis.
65-80.
S. Wang, J. F. Balarezo, S. Kandeepan, A. Al-Hourani, K.
G. Chavez and B. Rubinstein, "Machine Learning in
Network Anomaly Detection: A Survey," in IEEE
Access, vol. 9, pp. 152379-152396, 2021, doi:
10.1109/ACCESS.2021.3126834.
Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong.
Federated machine learning: Concept and applications.
ACM Transactions on Intelligent Systems and
Technologies (TIST), Feb. 2019.