computational resource requirements. (iii) Explore
how optimization strategies for parallel execution in
a multi-VM environment could enhance scalability
and resource utilization and provide further
experimentation. (iv) Employ advanced analytics and
recommender systems to provide more standardized
user profiling and extend the self-adaptive
capabilities of serious games by dynamically
adjusting content, scenarios and gameplay based on
user behaviour and experiences.
REFERENCES
Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S.,
Ahmed, E., Anuar, N. B., & Vasilakos, A. V. (2016).
Big data: From beginning to future. International
Journal of Information Management, 36(6), 1231-1247.
Nasrollahi, H., Lampropoulos, I., Werning, S., Belinskiy,
A., Fijnheer, J. D., Veltkamp, R. C., & van Sark, W.
(2023). Review of Serious Energy Games: Objectives,
Approaches, Applications, Data Integration, and
Performance Assessment. Energies, 16(19), 6948.
Pérez, J., Castro, M., & López, G. (2023). Serious games
and ai: Challenges and opportunities for computational
social science. IEEE Access, 11, 62051-62061.
assessment, and improvement, 101-134.
Zhao, Y., Gao, W., & Ku, S. (2023). Optimization of the
game improvement and data analysis model for the
early childhood education major via deep learning.
Scientific reports, 13(1), 20273.
Kosmides, P., Demestichas, K., Adamopoulou, E.,
Koutsouris, N., Oikonomidis, Y., & De Luca, V. (2018,
August). Inlife: Combining real life with serious games
using iot. In 2018 IEEE Conference on Computational
Intelligence and Games (CIG) (pp. 1-7). IEEE.
Al-Mansour, F. (2023). IoT Data Management: Challenges
and Solutions in Handling Vast Amounts of
Information. Innovative Computer Sciences Journal,
9(1).
Hooshyar, D., Yousefi, M., & Lim, H. (2018). Data-driven
approaches to game player modelling: a systematic
literature review. ACM Computing Surveys (CSUR),
50(6), 1-19.
Nolte, H., & Wieder, P. (2022). Realising data-centric
scientific workflows with provenance-capturing on data
lakes. Data Intelligence, 4(2), 426-438.
Hai, R., Koutras, C., Quix, C., & Jarke, M. (2023). Data
lakes: A survey of functions and systems. IEEE
Transactions on Knowledge and Data Engineering,
35(12), 12571-12590.
Gorelik, A. (2019). The enterprise big data lake: Delivering
the promise of big data and data science. O'Reilly
Media.
Fang, H. (2015, June). Managing data lakes in big data era:
What's a data lake and why has it became popular in
data management ecosystem. In 2015 IEEE
International Conference on Cyber Technology in
Automation, Control, and Intelligent Systems (CYBER)
(pp. 820-824). IEEE.
Olawoyin, A. M., Leung, C. K., & Cuzzocrea, A. (2021,
December). Open data lake to support machine learning
on Arctic big data. In 2021 IEEE International
Conference on Big Data (Big Data) (pp. 5215-5224).
IEEE.
Cherradi, M., & EL Haddadi, A. (2021, November). Data
lakes: A survey paper. In The Proceedings of the
International Conference on Smart City Applications
(pp. 823-835). Cham: Springer International
Publishing.
Sawadogo, P., & Darmont, J. (2021). On data lake
architectures and metadata management. Journal of
Intelligent Information Systems, 56(1), 97-120.
Beheshti, Amin, Boualem Benatallah, Reza Nouri, and
Alireza Tabebordbar. "CoreKG: a knowledge lake
service." Proceedings of the VLDB Endowment 11, no.
12 (2018): 1942-1945.
Pingos, M., & Andreou, A. S. (2022, April). Exploiting
Metadata Semantics in Data Lakes Using Blueprints. In
International Conference on Evaluation of Novel
Approaches to Software Engineering (pp. 220-242).
Cham: Springer Nature Switzerland.
SkyQuest Technology. (2021). Global serious games
market size, share, growth analysis by gaming platform
and application – Industry forecast 2023-2030.
SkyQuest. https://www.skyquestt.com/report/serious-
games-market
Warren, J., & Marz, N. (2015). Big Data: Principles and
best practices of scalable realtime data systems. Simon
and Schuster.
Caggianese, G., Cuomo, S., Esposito, M., Franceschini, M.,
Gallo, L., Infarinato, F., ... & Romano, P. (2018).
Serious games and in-cloud data analytics for the
virtualization and personalization of rehabilitation
treatments. IEEE Transactions on Industrial
Informatics, 15(1), 517-526.
Alonso-Fernández, C., Perez-Colado, I., Freire, M.,
Martínez-Ortiz, I., & Fernández-Manjón, B. (2018).
Improving serious games analyzing learning analytics
data: Lessons learned. Games and Learning Alliance
Conference, 287-296. Cham: Springer.
Riad, R., Ali, Y., Tits, N., Humbert, S., & Dutoit, T. (2022).
KSoF: A Dataset of Fluency and Stuttering Annotations
of German Speech. arXiv.
https://arxiv.org/abs/2203.05383
Vihman, M. M. (2017). Learning words and learning
sounds: Advances in language development. British
Journal of Psychology, 108(1), 1-27.
Arnab, S., Lim, T., Carvalho, M. B., Bellotti, F., Freitas, S.
de, Louchart, S., … De Gloria, A. (2015). Mapping
learning and game mechanics for serious games
analysis. British Journal of Educational Technology,
46(2), 391–411. https://doi.org/10.1111/bjet.12113
Shute, V. J., Ventura, M., Bauer, M., & Zapata-Rivera, D.
(2013). Measuring and Supporting Learning in Games:
Stealth Assessment. The MIT Press.