
works, both approaches using attention mechanisms.
These networks were trained individually at 40x and
100x magnification and at a combination of the two
magnifications. The results obtained were promising,
showing the effectiveness of using the attention mech-
anism integrated into the VGG16 and LeNet networks
to improve classification performance, with the best
performance achieved by VGG16 with channel atten-
tion and dilated convolution.
The evaluation metrics showed satisfactory results
for training configurations, demonstrating the viabil-
ity of the proposed method for classifying penile can-
cer in histopathological images. For 40× magnifica-
tion images, the accuracy of 91%, the precision of
91%, recall of 90%, and F1-Score of 90% were ob-
tained. The following values were obtained for the
100× magnification images: 95% accuracy, 95% pre-
cision, 93% recall and 94% F1-Score. Finally, when
combining the 40X and 100X images, the model
achieved an accuracy, precision, recall, and F1-Score
of 92%, 91%, 90%, and 90%, respectively.
The results found, however, suggest opportuni-
ties for further advances. In future work, we plan
to explore the application of the attention mechanism
in other convolutional neural network architectures,
such as those of the ResNet and EfficientNet family
(He et al., 2016; Tan and Le, 2019). In addition, we
will consider the use of other attention models based
on Vision Transformer (Dosovitskiy et al., 2021) such
as attention based on multiple heads (Vaswani et al.,
2017) or Data-efficient image Transformers (DeiT)
(Touvron et al., 2021), recommended for experiments
with smaller amounts of data.
REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M.,
Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan,
V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.
(2016). Tensorflow: a system for large-scale machine
learning. In Proceedings of the 12th USENIX confer-
ence on Operating Systems Design and Implementa-
tion (OSDI’16), pages 265–283.
Belfort, F., Silva, I., Silva, A., and Paiva, A. (2023).
Detecc¸
˜
ao de c
ˆ
ancer peniano em imagens histopa-
tol
´
ogicas usando redes neurais convolucionais em cas-
cata. In Anais do XXIII Simp
´
osio Brasileiro de
Computac¸
˜
ao Aplicada
`
a Sa
´
ude, pages 328–339.
Bleeker, M., Heideman, D., Snijders, P., Horenblas, S., Dill-
ner, J., and Meijer, C. (2009). Penile cancer: epidemi-
ology, pathogenesis and prevention. In World Journal
of Urology, volume 27, pages 141–150.
Brancati, N., Pietro, G. D., Riccio, D., and Frucci, M.
(2021). Gigapixel histopathological image analysis
using attention-based neural networks. In IEEE Ac-
cess, volume PP.
Chen, H., Li, C., Li, X., Rahaman, M. M., Hu, W., Li,
Y., Liu, W., Sun, C., Sun, H., Huang, X., and Grze-
gorzek, M. (2022a). Il-mcam: An interactive learning
and multi-channel attention mechanism-based weakly
supervised colorectal histopathology image classifica-
tion approach. In Computers in Biology and Medicine,
volume 143, page 105265.
Chen, H., Li, C., Wang, G., Li, X., Rahaman, M., Sun,
H., Hu, W., Li, Y., Liu, W., Sun, C., Ai, S., and
Grzegorzek, M. (2022b). Gashis-transformer: A
multi-scale visual transformer approach for gastric
histopathological image detection. In Pattern Recog-
nition, volume 130, page 108827.
Chollet, F. et al. (2015). Keras. In GitHub. last accessed
2024/04/25.
DeBoer, P. T., Kroese, D. P., Mannor, S., and Rubinstein,
R. Y. (2005). A tutorial on the cross-entropy method.
volume 134, pages 19–67.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2021). An image is worth 16x16 words: Trans-
formers for image recognition at scale. In Interna-
tional Conference on Learning Representations.
Fonseca, A., Pinto, J., Marques, M., Drosdoski, F., and
Neto, L. (2010). Estudo epidemiol
´
ogico do c
ˆ
ancer
de p
ˆ
enis no estado do par
´
a, brasil. In Revista Pan-
Amaz
ˆ
onica de Sa
´
ude, volume 1.
Gaio, D. E. (2022). An
´
alise comparativa das t
´
ecnicas de
implementac¸
˜
ao de arquiteturas da func¸
˜
ao sigmoide.
Gomes, A., Moraes, J., da S. Ferreira, A., and dos S. Ozela,
C. (2019). Educac¸
˜
ao em sa
´
ude para prevenc¸
˜
ao do
c
ˆ
ancer de p
ˆ
enis: relato de experi
ˆ
encia / health edu-
cation for the prevention of penile cancer: experience
report. In Brazilian Journal of Health Review, vol-
ume 2, pages 2961–2964.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2017).
Squeeze-and-excitation networks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 7132–7141.
Hunt, K. K., Robb, G. L., Strom, E. A., Ueno, N. T., and
(Eds.), J. M. (2008). Breast Cancer, 2nd Edition.
Springer, 2nd edition.
Ijaz, A., Raza, B., Kiran, I., Waheed, A., Raza, A., Shah, H.,
and Aftan, S. (2023). Modality specific cbam-vggnet
model for the classification of breast histopathology
images via transfer learning. In IEEE Access, vol-
ume 11, pages 15750–15762.
International Agency for Research on Cancer (2024). Iarc
global cancer observatory. In International Agency
for Research on Cancer Website. Last accessed
2024/05/14.
ICEIS 2025 - 27th International Conference on Enterprise Information Systems
660