
The International Journal of Robotics Research, 40(8-
9):959–967.
Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke,
S., Stachniss, C., and Gall, J. (2019). SemanticKITTI:
A Dataset for Semantic Scene Understanding of Li-
DAR Sequences. Version Number: 3.
Behley, J. and Stachniss, C. (2018). Efficient Surfel-Based
SLAM using 3D Laser Range Data in Urban Envi-
ronments. In Robotics: Science and Systems XIV.
Robotics: Science and Systems Foundation.
Biber, P. and Strasser, W. (2003). The normal distributions
transform: a new approach to laser scan matching.
In Proceedings 2003 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2003)
(Cat. No.03CH37453), volume 3, pages 2743–2748,
Las Vegas, Nevada, USA. IEEE.
Chen, X., Milioto, A., Palazzolo, E., Giguere, P., Behley, J.,
and Stachniss, C. (2019). SuMa++: Efficient LiDAR-
based Semantic SLAM. In 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 4530–4537, Macau, China. IEEE.
Cui, Y., Chen, X., Zhang, Y., Dong, J., Wu, Q., and Zhu, F.
(2023). BoW3D: Bag of Words for Real-Time Loop
Closing in 3D LiDAR SLAM. IEEE Robotics and
Automation Letters, 8(5):2828–2835.
Cui, Y., Zhang, Y., Dong, J., Sun, H., Chen, X., and Zhu,
F. (2024). LinK3D: Linear Keypoints Representation
for 3D LiDAR Point Cloud. IEEE Robotics and Au-
tomation Letters, 9(3):2128–2135.
Dai, Y., Wu, J., and Wang, D. (2023). A review of com-
mon techniques for visual simultaneous localization
and mapping. Journal of Robotics, 2023(1):8872822.
Debeunne, C. and Vivet, D. (2020). A review of visual-lidar
fusion based simultaneous localization and mapping.
Sensors, 20(7):2068.
Funk, N., Tarrio, J., Papatheodorou, S., Popovi
´
c, M., Al-
cantarilla, P. F., and Leutenegger, S. (2021). Multi-
resolution 3D mapping with explicit free space rep-
resentation for fast and accurate mobile robot mo-
tion planning. IEEE Robotics and Automation Letters,
6(2):3553–3560.
Gao, R., Li, Y., Li, B., and Li, G. (2024). FELC-SLAM:
feature extraction and loop closure optimized lidar
SLAM system. Measurement Science and Technol-
ogy, 35(11):115112.
Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for autonomous driving? The KITTI vision bench-
mark suite. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361,
Providence, RI. IEEE.
Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C.,
and Burgard, W. (2013). OctoMap: an efficient proba-
bilistic 3D mapping framework based on octrees. Au-
tonomous Robots, 34(3):189–206.
Lin, J., Yuan, C., Cai, Y., Li, H., Ren, Y., Zou, Y., Hong,
X., and Zhang, F. (2023). ImMesh: An Immediate
LiDAR Localization and Meshing Framework. IEEE
Transactions on Robotics, 39(6):4312–4331.
Moon, Y., Hong, J., Park, C., and Han, S. (2024).
Faster GICP with Voxel-Based Computation: Dy-
namic voxel size refinement for Enhanced Accuracy.
In 2024 24th International Conference on Control,
Automation and Systems (ICCAS), pages 493–498,
Jeju, Korea, Republic of. IEEE.
Pang, S., Kent, D., Cai, X., Al-Qassab, H., Morris, D., and
Radha, H. (2018). 3d scan registration based local-
ization for autonomous vehicles - a comparison of ndt
and icp under realistic conditions. In 2018 IEEE 88th
Vehicular Technology Conference (VTC-Fall), pages
1–5.
Pomerleau, F., Colas, F., Siegwart, R., et al. (2015). A
review of point cloud registration algorithms for mo-
bile robotics. Foundations and Trends® in Robotics,
4(1):1–104.
Reijgwart, V., Cadena, C., Siegwart, R., and Ott, L. (2023).
Efficient volumetric mapping of multi-scale environ-
ments using wavelet-based compression. In Robotics:
Science and Systems XIX. Robotics: Science and Sys-
tems Foundation.
Ruan, J., Li, B., Wang, Y., and Sun, Y. (2023). SLAMesh:
Real-time LiDAR Simultaneous Localization and
Meshing. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 3546–3552,
London, United Kingdom. IEEE.
Saarinen, J., Andreasson, H., Stoyanov, T., Ala-Luhtala, J.,
and Lilienthal, A. J. (2013). Normal Distributions
Transform Occupancy Maps: Application to large-
scale online 3D mapping. In 2013 IEEE International
Conference on Robotics and Automation, pages 2233–
2238, Karlsruhe, Germany. IEEE.
Schreier, M., Willert, V., and Adamy, J. (2015). Com-
pact representation of dynamic driving environments
for adas by parametric free space and dynamic object
maps. IEEE Transactions on Intelligent Transporta-
tion Systems, 17(2):367–384.
Segal, A., Haehnel, D., and Thrun, S. (2009). Generalized-
ICP. In Robotics: Science and Systems V. Robotics:
Science and Systems Foundation.
Vespa, E., Funk, N., Kelly, P. H. J., and Leutenegger, S.
(2019). Adaptive-resolution octree-based volumetric
SLAM. In International Conference on 3D Vision
(3DV), pages 654–662.
Vespa, E., Nikolov, N., Grimm, M., Nardi, L., Kelly, P. H. J.,
and Leutenegger, S. (2018). Efficient Octree-Based
Volumetric SLAM Supporting Signed-Distance and
Occupancy Mapping. IEEE Robotics and Automation
Letters, 3(2):1144–1151.
Vizzo, I., Chen, X., Chebrolu, N., Behley, J., and Stach-
niss, C. (2021). Poisson Surface Reconstruction for
LiDAR Odometry and Mapping. In 2021 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 5624–5630, Xi’an, China. IEEE.
Vizzo, I., Guadagnino, T., Mersch, B., Wiesmann, L.,
Behley, J., and Stachniss, C. (2023). KISS-ICP: In De-
fense of Point-to-Point ICP – Simple, Accurate, and
Robust Registration If Done the Right Way. IEEE
Robotics and Automation Letters, 8(2):1029–1036.
Wang, K., Gao, F., and Shen, S. (2019). Real-time Scalable
Dense Surfel Mapping. In 2019 International Con-
ference on Robotics and Automation (ICRA), pages
6919–6925, Montreal, QC, Canada. IEEE.
VEHITS 2025 - 11th International Conference on Vehicle Technology and Intelligent Transport Systems
206