Qiu, J., Wu, Q., Ding, G., Xu, Y., & Feng, S. (2016). A
survey of machine learning for big data processing.
EURASIP Journal on Advances in Signal Processing,
2016(1), 67.
Zeng, Z., Li, Y., Li, Y., & Luo, Y. (2022). Statistical and
machine learning methods for spatially resolved
transcriptomics data analysis. Genome Biology, 23(1),
1–23.
Feng, S., Zuo, C., Hu, Y., Li, Y., & Chen, Q. (2021). Deep-
learning-based fringe-pattern analysis with uncertainty
estimation. Optica, 8(12), 1507–1510.
Bhatti, U. A., Yan, Y., Zhou, M., Ali, S., Hussain, A.,
Qingsong, H., Yu, Z., & Yuan, L. (2021). Time series
analysis and forecasting of air pollution particulate
matter (PM2.5): An SARIMA and factor analysis
approach. IEEE Access, 9, 41019–41031.
Ma, F., & Liu, Q. (2021). Fuzzy pattern recognition for
atmospheric quality in the original location of Capital
Iron and Steel Company. 2011 Eighth International
Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), 429–432.
Kobylin, O., & Lyashenko, V. (2017). Time series
clustering based on the k-means algorithm. Journal La
Multiapp, 894–903.
Aamer, Y., Benkaouz, Y., Ouzzif, M., Bouragba, K. (2020)
Initial centroid selection method for an enhanced
kmeans clustering algorithm, Ubiquitous Networking:
5th International Symposium, 182–190.
Poositaporn, A., Jung, H., & Lee, D. (2024). Air pollution
pattern analysis combined vector slope and k-means
clustering. In Proceedings of the International
Conference on Future Information & Communication
Engineering.
Poositaporn, A., Jung, H., Park, J., & Onuean, A. (2023).
Similarity measuring for air pollution patterns based on
vector slope. In Proceedings of the Korean Society for
Internet Information Spring Conference.
Poositaporn, A., Jung, H., Park, J., & Onuean, A. (2023).
Towards multiple window framework for pattern
analysis. In Proceedings of the Korea Computer
Congress.
Poositaporn, A., Jung, H., Park, J., & Onuean, A. (2023).
Analysis of the influence of observation duration and
individual air pollutants on air quality prediction. In
Proceedings of the Korea Artificial Intelligence
Conference.
Marutho, D., Handaka, S. H., & Muljono, E. W. (2018). The
determination of cluster number at K-mean using elbow
method and purity evaluation on headline news. In 2018
International Seminar on Application for Technology of
Information and Communication, 533-538.
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B.,
& Heming, J. (2023). K-means clustering algorithms: A
comprehensive review, variants analysis, and advances
in the era of big data. Information Sciences, 622, 178–
210.
Weller-Fahy, D. J., Borghetti, B. J., & Sodemann, A. A.
(2015). A survey of distance and similarity measures
used within network intrusion anomaly detection. IEEE
Communications Surveys & Tutorials, 17(1), 70–91.
Besenczi, R., Bátfai, N., Jeszenszky, P., Major, R., Monori,
F., & Ispány, M. (2021). Large-scale simulation of
traffic flow using Markov model. PLoS ONE, 16(2).
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree
boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 785–794.
Biau, G., & Scornet, E. (2016). A random forest guided
tour. TEST, 25(2), 197–227.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8), 1735–1780.
Brama, H. (2023). Evaluation of neural networks defenses
and attacks using NDCG and reciprocal rank metrics.
International Journal of Information Security, 22(2),
525–540.
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q.
(2023). Accurate medium-range global weather
forecasting with 3D neural networks. Nature,
619(7970), 533–538.