REFERENCES
Ashwin, J., Chhabra, A., & Rao, V. (2023). Using Large
Language Models for Qualitative Analysis can
Introduce Serious Bias (arXiv:2309.17147). arXiv.
https://doi.org/10.48550/arXiv.2309.17147
Benoit, K., Watanabe, K., Wang, H., Lua, J. W., Kuha, J.,
& Council (ERC-2011-StG 283794-QUANTESS), E.
R. (2024). quanteda.textstats: Textual Statistics for the
Quantitative Analysis of Textual Data (Version 0.97.2)
[Computer software]. https://cran.r-
project.org/web/packages/quanteda.textstats/index.htm
l
Braun, V., & Clarke, V. (2013). Successful qualitative
research: A practical guide for beginners (1. ed.).
SAGE Publications.
Fleischmann, K. R. (2006). Boundary Objects with
Agency: A Method for Studying the Design–Use
Interface. The Information Society, 22(2), 77–87.
https://doi.org/10.1080/01972240600567188
Fox, N. J. (2011). Boundary Objects, Social Meanings and
the Success of New Technologies. Sociology, 45(1),
70–85. https://doi.org/10.1177/0038038510387196
Gee, J. P. (2001). An introduction to discourse analysis
[Elektronisk resurs] theory and method. Routledge.
Hägglöf, H. (2023). The KBLab Blog: A robust, multi-label
sentiment classifier for Swedish. https://kb-
labb.github.io/posts/2023-06-16-a-robust-multi-label-
sentiment-classifier-for-swedish/
Holmberg, K., Matta, C., Nordmark, S., Masiello, I., Rack,
J., & Davidsson, M. (2025). From Balance to Informed
Criticism – Discursive Transformations in a
Development Project on Digital Learning Material in
Primary School. Proceedings of INTED Conference.
Husson, F., Josse, J., Le, S., & Mazet, J. (2024).
FactoMineR: Multivariate Exploratory Data Analysis
and Data Mining (Version 2.11) [Computer software].
https://cran.r-
project.org/web/packages/FactoMineR/index.html
Kassambara, A., & Mundt, F. (2020). factoextra: Extract
and Visualize the Results of Multivariate Data Analyses
(Version 1.0.7) [Computer software]. https://cran.r-
project.org/web/packages/factoextra/index.html
Laclau, E., & Mouffe, C. (1985). Hegemony & socialist
strategy. Verso.
Masiello, I., Fixsen, D. L., Nordmark, S., Mohseni, Z.
(Artemis), Holmberg, K., Rack, J., Davidsson, M.,
Andersson-Gidlund, T., & Augustsson, H. (2023).
Digital transformation in schools of two southern
regions of Sweden through implementation-informed
approach: A mixed-methods study protocol. PLOS
ONE, 18(12), e0296000.
https://doi.org/10.1371/journal.pone.0296000
Masiello, I., Matta, C., Holmberg, K., Nordmark, S., Rack,
J., & Mohseni, Z. (2025). An AI Chat-Bot Thematic
Analysis of Teachers’ Expectations of Digital Learning
Materials in Primary Schools. Proceedings of INTED
Conference.
Matta, C. (2022). Tolkningens metodologi och selektiv
abduktion. Pedagogisk forskning i Sverige,
27(4), 37–
61. https://doi.org/10.15626/pfs27.04.03
Matta, C., Nordmark, S., Holmberg, K., Davidsson, M.,
Rack, J., & Masiello, I. (2025). The Discursive
Mechanisms of Teachers’ Digital Professional
Development: A Quantitative Approach. Proceedings
of INTED Conference.
Nordmark, S., Augustsson, H., Davidsson, M., Andersson-
Gidlund, T., Holmberg, K., Mohseni, Z. (Artemis),
Rack, J., & Masiello, I. (2024). Piloting Systematic
Implementation of Educational Technology in Swedish
K-12 Schools – Two-Years-In Report. Global
Implementation Research and Applications, 4(3), 309–
323. https://doi.org/10.1007/s43477-024-00130-w
Pääkkönen, J., & Ylikoski, P. (2021). Humanistic
interpretation and machine learning. Synthese, 199(1),
1461–1497. https://doi.org/10.1007/s11229-020-
02806-w
Schroeder, H., Quéré, M. A. L., Randazzo, C., Mimno, D.,
& Schoenebeck, S. (2024). Large Language Models in
Qualitative Research: Can We Do the Data Justice?
(arXiv:2410.07362). arXiv.
https://doi.org/10.48550/arXiv.2410.07362
Suárez, M. (2004). An Inferential Conception of Scientific
Representation. Philosophy of Science, 71(5), 767–779.
https://doi.org/10.1086/421415
Watanabe, K., & Xuan-Hieu, P. (2024). seededlda: Seeded
Sequential LDA for Topic Modeling (Version 1.4.1)
[Computer software]. https://cran.r-
project.org/web/packages/seededlda/index.html
APPENDIX
Discourse Themes
DLM as a
Pedagogical Tool
Teacher-adapted,
Language functions,
Multimodality, Learning
analytics,
Fun/Lively/Interesting,
Students' Digital
Competence, Reasoning,
Flexibility, Explanations,
Goal Fulfillment,
Repetition, La