
Brown, W. M., Gedeon, T., Groves, D., and Barnes, R.
(2000). Artificial neural networks: a new method for
mineral prospectivity mapping. Australian journal of
earth sciences, 47(4):757–770.
Carvalho, M., Azzalini, A., Cardoso-Fernandes, J., Santos,
P., Lima, A., and Teodoro, A. (2024). Multi-sensor ap-
proach for cobalt exploration in asturias (spain) using
machine learning algorithms. In IGARSS 2024 - 2024
IEEE International Geoscience and Remote Sensing
Symposium, pages 2122–2126.
Farahnakian, F., Farahnakian, F., Sheikh, J., Downey, S.,
Williams, V., and Heikkonen, J. (2024a). Multi-modal
fusion of lidar and prisma data for cobalt mapping:
A case study from the
´
Aramo mine, spain. In Multi-
Modal Visual Pattern Recognition Workshop, Interna-
tional Conference on Pattern Recognition (ICPR), In-
dia. Accepted, to appear.
Farahnakian, F., Torppa, J., Luodes, N., Panttila, H., and
Karlsson, T. (2024b). A comparative study of machine
learning models for pixel-wise acid mine drainage
classification using sentinel-2. pages 2127–2131.
Genuer, R., Poggi, J.-M., and Tuleau, C. (2008). Random
forests: some methodological insights.
Ibrahim, B., Majeed, F., Ewusi, A., and Ahenkorah, I.
(2022). Residual geochemical gold grade prediction
using extreme gradient boosting. Environmental Chal-
lenges, 6:100421.
Jr., F. J. M. (1951). The kolmogorov-smirnov test for good-
ness of fit. Journal of the American Statistical Associ-
ation, 46(253):68–78.
Lo, P.-C., Lo, W., Wang, T.-T., and Hsieh, Y.-C. (2021). Ap-
plication of geological mapping using airborne-based
lidar dem to tunnel engineering: Example of don-
gao tunnel in northeastern taiwan. Applied Sciences,
11:4404.
Luo, Z., Xiong, Y., and Zuo, R. (2020). Recognition of geo-
chemical anomalies using a deep variational autoen-
coder network. Applied Geochemistry, 122:104710.
Paniagua, A., Loredo, J., and Garcia Iglesias, J. (1988). Ep-
ithermal (cu-co-ni) mineralization in the aramo mine
(cantabrian mountains, spain): Correlation between
paragenetic and fluid inclusion data. Bulletin de
Min
´
eralogie, 111(3):383–391.
Parsa, M. and Maghsoudi, A. (2021). Assessing the effects
of mineral systems-derived exploration targeting cri-
teria for random forests-based predictive mapping of
mineral prospectivity in ahar-arasbaran area, iran. Ore
Geology Reviews, 138:104399.
Patki, N., Wedge, R., and Veeramachaneni, K. (2016).
The synthetic data vault. In 2016 IEEE International
Conference on Data Science and Advanced Analytics
(DSAA), pages 399–410.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay,
´
E. (2011). Scikit-learn: Machine learn-
ing in python. Journal of Machine Learning Research,
12:2825–2830.
Putkinen, N., Eyles, N., Putkinen, S., Ojala, A., Palmu,
J.-P., Sarala, P., V
¨
a
¨
an
¨
anen, T., R
¨
ais
¨
anen, J., Saare-
lainen, J., Ahtonen, N., R
¨
onty, H., Kiiskinen, A.,
Rauhaniemi, T., and Tervo, T. (2017). High-resolution
lidar mapping of glacial landforms and ice stream
lobes in finland. Bulletin of the Geological Society
of Finland, 89.
Sheikh, J., Farahnakian, F., Farahnakian, F., Zelioli, L., and
Heikkonen, J. (2024). SEDA: Similarity-Enhanced
Data Augmentation for Imbalanced Learning, pages
32–47.
Sun, K., Yansi, C., Geng, G., Lu, Z., Zhang, W., Song, Z.,
Guan, J., Zhao, Y., and Zhang, Z. (2024). A review
of mineral prospectivity mapping using deep learning.
Minerals, 14:1021.
Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veera-
machaneni, K. (2019a). Modeling tabular data using
conditional gan. Advances in neural information pro-
cessing systems, 32.
Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veera-
machaneni, K. (2019b). Modeling tabular data using
conditional gan. Advances in Neural Information Pro-
cessing Systems (NeurIPS).
´
Alvarez, R., Ord
´
o
˜
nez, A., P
´
erez, A., De Miguel, E., and
Charlesworth, S. (2018). Mineralogical and environ-
mental features of the asturian copper mining district
(spain): A review. Engineering Geology, 243:206–
217.
S34I 2025 - Special Session on S34I - From the Sky to the Soil
296