cyber physical systems. Beyond SCADA: Networked
Embedded Control for Cyber Physical Systems, 41.
Arboleda-Flórez, J. (2006). Forensic psychiatry:
contemporary scope, challenges and controversies.
World Psychiatry, 5(2), 87.
Atzori, L., Iera, A., & Morabito, G. (2010). The internet of
things: A survey. Computer networks, 54(15), 2787-
2805.
Barnes, J. C., Raine, A., & Farrington, D. P. (2022). The
interaction of biopsychological and socio-
environmental influences on criminological outcomes.
Justice Quarterly, 39(1), 26-50.
Barricelli, B. R., & Fogli, D. (2024). Digital twins in
human-computer interaction: A systematic review.
International Journal of Human–Computer
Interaction, 40(2), 79-97.
Batty, M. (2018). Digital twins. Environment and Planning
B: Urban Analytics and City Science, 45(5), 817-820.
Baus, O., & Bouchard, S. (2014). Moving from virtual
reality exposure-based therapy to augmented reality
exposure-based therapy: a review. Frontiers in human
neuroscience, 8, 112.
Biocca, F., Harms, C., & Burgoon, J. K. (2003). Toward a
more robust theory and measure of social presence:
Review and suggested criteria. Presence:
Teleoperators & virtual environments, 12(5), 456-480.
Boukhalfi, T., Joyal, C., Bouchard, S., Neveu, S. M., &
Renaud, P. (2015). Tools and techniques for real-time
data acquisition and analysis in brain computer
interface studies using qEEG and eye tracking in virtual
reality environment. IFAC-PapersOnLine, 48(3), 46-
51.
Brick, C., Hood, B., Ekroll, V., & De-Wit, L. (2022).
Illusory essences: A bias holding back theorizing in
psychological science. Perspectives on Psychological
Science, 17(2), 491-506.
Brideau-Duquette, M., & Renaud, P. (2023). Sexual
Presence: A Brief Introduction. In Encyclopedia of
Sexual Psychology and Behavior (pp. 1-9). Cham:
Springer International Publishing.
Bzdok, D., & Meyer-Lindenberg, A. (2018). Machine
learning for precision psychiatry: opportunities and
challenges. Biological Psychiatry: Cognitive
Neuroscience and Neuroimaging, 3(3), 223-230.
Chandrasiri, A., Collett, J., Fassbender, E., & De Foe, A.
(2020). A virtual reality approach to mindfulness skills
training. Virtual Reality,
24(1), 143-149.
Chekroud, A. M., Bondar, J., Delgadillo, J., Doherty, G.,
Wasil, A., Fokkema, M., ... & Choi, K. (2021). The
promise of machine learning in predicting treatment
outcomes in psychiatry. World Psychiatry, 20(2), 154-
170.
Chen, F., Tang, Y., Wang, C., Huang, J., Huang, C., Xie,
D., ... & Zhao, C. (2022a). Medical cyber–physical
systems: A solution to smart health and the state of the
art. IEEE Transactions on Computational Social
Systems, 9(5), 1359-1386.
Chen, Z. S., Galatzer-Levy, I. R., Bigio, B., Nasca, C., &
Zhang, Y. (2022b). Modern views of machine learning
for precision psychiatry. Patterns, 3(11).
CoeurWay. Retrieved from https://www.coeurway.com/en.
Corcoran, C. M., & Cecchi, G. A. (2020). Using language
processing and speech analysis for the identification of
psychosis and other disorders. Biological Psychiatry:
Cognitive Neuroscience and Neuroimaging, 5(8), 770-
779.
Dhar, V. (2012). Data science and prediction.
Communications of the ACM, 56(12), 64-73.
Duff, A. S. (2005). Social engineering in the information
age. The Information Society, 21(1), 67-71.
Eli Health. Retrieved from https://eli.health/
products/cortisol.
Emmelkamp, P. M., & Meyerbröker, K. (2021). Virtual
reality therapy in mental health. Annual review of
clinical psychology, 17(1), 495-519.
Endsley, M. R. (1995). Toward a theory of situation
awareness in dynamic systems. Human factors, 37(1),
32-64.
Feuerriegel, S., Frauen, D., Melnychuk, V., Schweisthal, J.,
Hess, K., Curth, A., ... & van der Schaar, M. (2024).
Causal machine learning for predicting treatment
outcomes. Nature Medicine, 30(4), 958-968.
Gillan, C. M., & Rutledge, R. B. (2021). Smartphones and
the neuroscience of mental health. Annual Review of
Neuroscience, 44(1), 129-151.
Goh, S. K., Abbass, H. A., Tan, K. C., Al-Mamun, A.,
Wang, C., & Guan, C. (2017). Automatic EEG artifact
removal techniques by detecting influential
independent components. IEEE Transactions on
Emerging Topics in Computational Intelligence, 1(4),
270-279.
Hitchcock, P. F., Fried, E. I., & Frank, M. J. (2022).
Computational psychiatry needs time and context.
Annual review of psychology, 73(1), 243-270.
Huys, Q. J., Maia, T. V., & Frank, M. J. (2016).
Computational psychiatry as a bridge from
neuroscience to clinical applications. Nature
neuroscience, 19(3), 404-413.
Inmon, B. (2016). Data Lake Architecture: Designing the
Data Lake and avoiding the garbage dump. Technics
Publications, LLC.
Jiang, C., Ma, Y., Chen, H., Zheng, Y., Gao, S., & Cheng,
S. (2020). Cyber physics system: a review. Library Hi
Tech, 38(1), 105-116.
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning:
Trends, perspectives, and prospects. Science,
349(6245), 255-260.
Katsoulakis, E., Wang, Q., Wu, H., Shahriyari, L., Fletcher,
R., Liu, J., ... & Deng, J. (2024). Digital twins for
health: a scoping review. NPJ Digital Medicine, 7(1),
77.
Khaitan, S. K., & McCalley, J. D. (2015). Design
techniques and applications of cyberphysical systems:
A survey. IEEE systems journal, 9(2), 350-365.
Lee, E. A. (2006, October). Cyber-physical systems-are
computing foundations adequate. In Position paper for
NSF workshop on cyber-physical systems: research
motivation, techniques and roadmap (Vol. 2, pp. 1-9).
Loomis, J. M., Blascovich, J. J., & Beall, A. C. (1999).
Immersive virtual environment technology as a basic