scale using drill-core hyperspectral data: A case study
in the Iberian Pyrite Belt. Ore Geology Reviews, 139 Pt
B, 104514. http://dx.doi.org/10.1016/j.oregeorev.
2021.104514.
De La Rosa, R., Tolosana-Delgado, R., Kirsch, M., &
Gloaguen, R. (2022). Automated multi-scale and
multivariate geological logging from drill-core
hyperspectral data. Remote Sensing, 14, 2676.
https://doi.org/10.3390/rs14112676.
Jakob, S., Zimmermann, R., Gloaguen, R., (2017). The
need for accurate geometric and radiometric corrections
of drone-borne hyperspectral data for mineral
exploration: MEPHySTo—a toolbox for pre-
processing drone-borne hyperspectral data. Remote
Sensing, 9(1), 88. https://doi.org/10.3390/rs9010088.
Jordão, H., Sousa, A. J., & Soares, A. (2023). Using
Bayesian neural networks for uncertainty assessment of
ore type boundaries in complex geological models.
Natural Resources Research, 32(6), 2495–2514.
https://doi.org/10.1007/s11053-023-10265-6.
Kohonen, T. (1990). The Self-Organizing Map.
Proceedings of the IEEE, 78(9), 1464–1480.
Kohonen, T. (1997). Exploration of very large databases by
Self-Organizing Maps. Proceedings of the IEEE
International Conference on Neural Networks, 4, PL1-
PL6.
Kohonen T (2001). Self-Organizing Maps. Springer-
Verlag. doi:10.1007/978-3-642-56927-2.
Lauzon, D., & Gloaguen, E. (2024). Quantifying
uncertainty and improving prospectivity mapping in
mineral belts using transfer learning and Random
Forest: A case study of copper mineralization in the
Superior Craton Province, Quebec, Canada. Ore
Geology Reviews, 105918. DOI:
https://doi.org/10.1016/j.oregeorev.2024.105918.
Lawley, C. J. M., McCafferty, A. E., Graham, G. E.,
Huston, D. L., Kelley, K. D., Czarnota, K., Paradis, S.,
Peter, J. M., Hayward, N., Barlow, M., Emsbo, P.,
Coyan, J., San Juan, C. A., & Gadd, M. G. (2022). Data-
driven prospectivity modelling of sediment–hosted Zn–
Pb mineral systems and their critical raw materials. Ore
Geology Reviews, 141, 104635.
Loredo, J., Álvarez, R., & Ordóñez, A. (2008). Mineralogy
and geochemistry of the Texeo Cu-Co mine site (NW
Spain): Screening tools for environmental assessment.
Environmental Geology, 55(6), 1299–1310.
Mao, X., Wang, J., Deng, H., Liu, Z., Chen, J., Wang, C.,
& Liu, J. (2023). Bayesian decomposition modelling:
An interpretable nonlinear approach for mineral
prospectivity mapping. Mathematical Geosciences,
55(5), 897–942. https://doi.org/10.1007/s11004-023-
10067-9.
Nagasingha, L. M. A., Bérubé, C. L., & Lawley, C. J. M.
(2024). A balanced mineral prospectivity model of
Canadian magmatic Ni (+ Cu + Co + PGE) sulphide
mineral systems using conditional variational
autoencoders. Ore Geology Reviews, 175, 106329.
DOI: https://doi.org/10.1016/j.oregeorev.2024.106329.
Nykänen, V., Niiranen, T., Molnár, F., Lahti, I., Korhonen,
K., Cook, N., & Skyttä, P. (2017). Optimizing a
knowledge-driven prospectivity model for gold
deposits within Peräpohja Belt, Northern Finland.
Natural Resources Research, 57, 571–584.
Nykänen, V., Törmänen, T., & Niiranen, T. (2023). Cobalt
prospectivity using a conceptual fuzzy logic overlay
method enhanced with the mineral systems approach.
Natural Resources Research, 1-29. https://doi.org/
10.1007/s11053-023-10255-8.
Ordóñez, A., Álvarez, R., Bros, T., & Loredo, J. (2005).
Consequences of abandoned Cu-Co mining in Northern
Spain in surface watercourses. Proceedings of the 9th
International Mine Water Congress, 611–617.
Paniagua, A., Fontboté, L., Fenoll Hach-Alí, P., Fallick, A.
E., Moreiras, D. B., & Corretgé, L. G. (1993). Tectonic
setting, mineralogical characteristics, geochemical
signatures and age dating of a new type of epithermal
carbonate-hosted, precious metal-five element deposits:
The Villamanín area (Cantabrian zone, Northern
Spain). Current Research in Geology Applied to Ore
Deposits, 531–534.
Paniagua, A., Loredo, J., & García-Iglesias, J. (1988).
Epithermal (Cu-Co-Ni) mineralization in the Aramo
mine (Cantabrian mountains, Spain): Correlation
between paragenetic and fluid inclusion data. Bulletin
de Minéralogie, 111, 383–391.
Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 65(6), 386-408.
Thiele, S., Lorenz, S., Kirsch, M., Gloaguen, R., (2020).
Hylite: a hyperspectral toolbox for open pit mapping.
EGU General Assembly 2020, Online, 4–8 May 2020,
p. 1. https://doi.org/10.5194/egusphere-egu2020-
13563.
Torppa, J., Nykänen, V., & Molnár, F. (2019).
Unsupervised clustering and empirical fuzzy
memberships for mineral prospectivity modelling. Ore
Geology Reviews, 107, 58-71.
https://doi.org/10.1016/j.oregeorev.2019.02.007.
Wittek, P., Gao, S. C., Lim, I. S., & Zhao, L. (2017).
somoclu: An efficient parallel library for self-
organizing maps. Journal of Statistical Software, 78(9),
1-22. doi:10.18637/jss.v078.109.
Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-
based weighting of geochemical and geological
evidence layers in mineral prospectivity mapping.
Journal of Geochemical Exploration, 164, 94–106.
Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen,
V., Hronsky, J. M., & Mihalasky, M. J. (2021). Data
analysis methods for prospectivity modelling as applied
to mineral exploration targeting: State-of-the-art and
outlook. Journal of Geochemical Exploration, 229,
106839.
Yousefi, M., Lindsay, M. D., & Kreuzer, O. (2024).
Mitigating uncertainties in mineral exploration
targeting: Majority voting and confidence index
approaches in the context of an exploration information
system (EIS). Ore Geology Reviews, 165, 105930.
DOI: https://doi.org/10.1016/j.oregeorev.2024.105930.
Zhang, S. E., Lawley, C. J. M., Bourdeau, J. E., Nwaila, G.
T., & Ghorbani, Y. (2024). Workflow-induced