
user satisfaction in cloud and edge computing ecosys-
tems, paving the way for more robust and scalable ap-
plications in the future.
ACKNOWLEDGMENTS
The related work section was paraphrased using Chat-
GPT (OpenAI, 2024).
FUNDING STATEMENT
This work was funded by the King Fahd University
of Petroleum and Minerals, Dhahran, Saudi Arabia,
under the Deanship of Research (Grant-EC213004).
REFERENCES
Ahmed, S., Irfan, S., Kiran, N., Masood, N., Anjum, N.,
and Ramzan, N. (2023). Remote health monitor-
ing systems for elderly people: a survey. Sensors,
23(16):7095.
Beck, M. and Moore, T. (1998). The internet2 distributed
storage infrastructure project: An architecture for in-
ternet content channels. Computer Networks and
ISDN systems, 30(22-23):2141–2148.
Chi, H. R., Domingues, M. F., and Radwan, A. (2020). Qos-
aware small-cell-overlaid heterogeneous sensor net-
work deployment for ehealth. In 2020 IEEE SEN-
SORS, pages 1–4. IEEE.
da Rosa Righi, R., Correa, E., Gomes, M. M., and da Costa,
C. A. (2020). Enhancing performance of iot applica-
tions with load prediction and cloud elasticity. Future
Generation Computer Systems, 109:689–701.
Etemadi, M., Ghobaei-Arani, M., and Shahidinejad, A.
(2020). Resource provisioning for iot services in the
fog computing environment: An autonomic approach.
Computer Communications, 161:109–131.
Hardin, B., Comer, D., and Rastegarnia, A. (2023). On
the unreliability of network simulation results from
mininet and iperf. International Journal of Future
Computer and Communication, 12(1).
Herrera, J. L., Bellavista, P., Foschini, L., Gal
´
an-Jim
´
enez,
J., Murillo, J. M., and Berrocal, J. (2020). Meeting
stringent qos requirements in iiot-based scenarios. In
GLOBECOM 2020-2020 IEEE Global Communica-
tions Conference, pages 1–6. IEEE.
Hoseiny, F., Azizi, S., Shojafar, M., and Tafazolli, R.
(2021). Joint qos-aware and cost-efficient task
scheduling for fog-cloud resources in a volunteer
computing system. ACM Transactions on Internet
Technology (TOIT), 21(4):1–21.
Hoseinyfarahabady, M. R., Tari, Z., and Zomaya, A. Y.
(2019). Disk throughput controller for cloud data-
centers. In 2019 20th International Conference on
Parallel and Distributed Computing, Applications and
Technologies (PDCAT), pages 404–409. IEEE.
Islam, M. Z., Sagar, A. S., and Kim, H. S. (2024). Enabling
pandemic-resilient healthcare: Edge-computing-
assisted real-time elderly caring monitoring system.
Applied Sciences, 14(18):8486.
K
¨
ulzer, D. F., Kasparick, M., Palaios, A., Sattiraju, R.,
Ramos-Cantor, O. D., Wieruch, D., Tchouankem,
H., G
¨
ottsch, F., Geuer, P., Schwardmann, J., et al.
(2021). AI4Mobile: Use cases and challenges of
AI-based QoS prediction for high-mobility scenarios.
In 2021 IEEE 93rd Vehicular Technology Conference
(VTC2021-Spring), pages 1–7. IEEE.
Louvros, S., Paraskevas, M., and Chrysikos, T. (2023).
QoS-aware resource management in 5G and 6G
cloud-based architectures with priorities. Information,
14(3):175.
Mininet-Project (2024). Mininet. https://mininet.org/.
Mukhopadhyay, A., Remanidevi Devidas, A., Rangan, V. P.,
and Ramesh, M. V. (2024). A QoS-aware IoT edge
network for mobile telemedicine enabling in-transit
monitoring of emergency patients. Future Internet,
16(2):52.
OpenAI (2024). ChatGPT: Conversational AI Model. https:
//openai.com/chatgpt. Accessed: [DATE].
Peng, D., Sun, L., Zhou, R., and Wang, Y. (2023).
Study QoS-aware fog computing for disease diagno-
sis and prognosis. Mobile Networks and Applications,
28(2):452–459.
Ravi, K. C., Kavitha, G., Prasad, L. H., Srinivasa Rao, N. V.,
Deivasigamani, S., Ramesh, J. V. N., and Siddiqui,
S. T. (2024). Beyond 5g-based smart hospitals: In-
tegrating connectivity and intelligence. Smart Hospi-
tals: 5G, 6G and Moving Beyond Connectivity, pages
169–193.
Rema, V. and Sikdar, K. (2021). Time series modelling
and forecasting of patient arrivals at an emergency de-
partment of a select hospital. In Recent trends in sig-
nal and image processing: ISSIP 2020, pages 53–65.
Springer.
RYU-Community (2024). Ryu sdn framework. https:
//ryu-sdn.org/.
Services, A. W. (2024). Aws pricing calculator for EC2
enhancements. https://calculator.aws/.
Swedish Society for Industrial Organization (2025).
Swedish society for industrial organization. https:
//ssio.se/.
Xu, Y., Li, J., Lu, Z., Wu, J., Hung, P. C., and Alelaiwi, A.
(2020). Arvmec: adaptive recommendation of virtual
machines for IoT in edge–cloud environment. Journal
of Parallel and Distributed Computing, 141:23–34.
IS4WB_SC 2025 - Special Session on Innovative Strategies to Enhance Older Adults’ Well-being and Social Connections
450