REFERENCES
Alsafari, B., Atwell, E., Walker, A., & Callaghan, M.
(2024). Towards effective teaching assistants: From
intent-based chatbots to LLM-powered teaching
assistants. Natural Language Processing Journal, 8,
100101. https://doi.org/10.1016/j.nlp.2024.100101
Azevedo, B. M., & Almeida, J. J. (2013). ABC with a UNIX
Flavor. In J. P. Leal, R. Rocha, & A. Simões (Eds.), 2nd
Symposium on Languages, Applications and Technolo-
gies, 29, 203–218.
Bozkurt, A., & Sharma, R. C. (2023). Generative AI and
Prompt Engineering: The Art of Whispering to Let the
Genie Out of the Algorithmic World. Asian Journal of
Distance Education, 18(2), Article 2.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.
D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.,
Wu, J., Winter, C., … Amodei, D. (2020). Language
Models are Few-Shot Learners. Advances in Neural In-
formation Processing Systems, 33, 1877–1901.
https://proceedings.neurips.cc/paper_files/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-
Abstract.html
Deng, Q., Yang, Q., Yuan, R., Huang, Y., Wang, Y., Liu,
X., Tian, Z., Pan, J., Zhang, G., Lin, H., Li, Y., Ma, Y.,
Fu, J., Lin, C., Benetos, E., Wang, W., Xia, G., Xue,
W., & Guo, Y. (2024). ComposerX: Multi-Agent
Symbolic Music Composition with LLMs (No.
arXiv:2404.18081).
Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia, H.,
Xu, J., Wu, Z., Chang, B., Sun, X., Li, L., & Sui, Z.
(2024). A Survey on In-context Learning. In Y. Al-
Onaizan, M. Bansal, & Y.-N. Chen (Eds.), Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing (pp. 1107–1128).
Association for Computational Linguistics.
E. Kijas, A., Neumann, J., Richts-Matthaei, K., & Støkken
Bue, M. (2024). Modelling Performance: Conceptual
Realities vs. Practical Limitations in MEI. Music
Encoding Conference 2024.
https://doi.org/10.17613/15jt-ed47
Evron, N., & Tartakovsky, R. (2024). The AI Revolution:
Speculations on Authorship, Pedagogy, and the Future
of the Profession. Poetics Today, 45(2), 189–195.
Gemini Team, Georgiev, P., Lei, V. I., Burnell, R., Bai, L.,
Gulati, A., Tanzer, G., Vincent, D., Pan, Z., Wang, S.,
Mariooryad, S., Ding, Y., Geng, X., Alcober, F.,
Frostig, R., Omernick, M., Walker, L., Paduraru, C.,
Sorokin, C., … Vinyals, O. (2024). Gemini 1.5:
Unlocking multimodal understanding across millions
of tokens of context (No. arXiv:2403.05530).
González Gutiérrez, S., Merchán Sánchez-Jara, J., &
Navarro Cáceres, M. (2022). Encoding Traditional
Spanish Music for Pedagogical Purposes Through
MEI: Challenges and Opportunities. Universidad de
Alicante. http://rua.ua.es/dspace/handle/10045/123672
Hao, Y., Chi, Z., Dong, L., & Wei, F. (2023). Optimizing
Prompts for Text-to-Image Generation. Advances in
Neural Information Processing Systems
, 36, 66923–
66939.
Hu, B., Zheng, L., Zhu, J., Ding, L., Wang, Y., & Gu, X.
(2024). Teaching Plan Generation and Evaluation With
GPT-4: Unleashing the Potential of LLM in
Instructional Design. IEEE Transactions on Learning
Technologies, 17, 1445–1459. IEEE Transactions on
Learning Technologies.
https://doi.org/10.1109/TLT.2024.3384765
Hui, T., Lau, S. S. S., & Yuen, M. (2021). Active Learning
as a Beyond-the-Classroom Strategy to Improve
University Students’ Career Adaptability. Sustain-
ability, 13(11), Article 11.
https://doi.org/10.3390/su13116246
Huron, D. (2002). Music Information Processing Using the
Humdrum Toolkit: Concepts, Examples, and Lessons.
Computer Music Journal, 26(2), 11–26.
İlhan, B., Gürses, B. O., & Güneri, P. (2024). Addressing
Inequalities in Science: The Role of Language Learning
Models in Bridging the Gap. International Dental
Journal, 74(4), 657–660.
https://doi.org/10.1016/j.identj.2024.01.026
Kazemitabaar, M., Hou, X., Henley, A., Ericson, B. J.,
Weintrop, D., & Grossman, T. (2024). How Novices
Use LLM-based Code Generators to Solve CS1 Coding
Tasks in a Self-Paced Learning Environment.
Proceedings of the 23rd Koli Calling International
Conference on Computing Education Research, 1–12.
https://doi.org/10.1145/3631802.3631806
Kharlashkin, L. (2024). Enhancing Multi-Dimensional
Music Generation by an LLM-based Data Augmenta-
tion Technique. https://doi.org/10.31237/ osf.io/9exyu
Liu (刘嘉怡), J., Jiang (江波), B., & Wei (魏雨昂), Y.
(2025). LLMs as Promising Personalized Teaching
Assistants: How Do They Ease Teaching Work? ECNU
Review of Education, 20965311241305138.
https://doi.org/10.1177/20965311241305138
Machlab, D., & Battle, R. (2024). LLM In-Context Recall is
Prompt Dependent (No. arXiv:2404.08865).
Good, M. D. (2013). MusicXML: The First Decade. In J.
Steyn (Ed.), Structuring Music through Markup
Language: Designs and Architectures (pp. 187–192)
IGI Global.
Oliwa, T. M. (2008). Genetic algorithms and the abc music
notation language for rock music composition.
Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation, 1603–1610.
Raiaan, M. A. K., Mukta, Md. S. H., Fatema, K., Fahad, N.
M., Sakib, S., Mim, M. M. J., Ahmad, J., Ali, M. E., &
Azam, S. (2024). A Review on Large Language
Models: Architectures, Applications, Taxonomies,
Open Issues and Challenges. IEEE Access, 12, 26839–
26874. IEEE Access.
Ratta, M., & Daga, E. (2022). Knowledge Graph
Construction from MusicXML: An empirical
investigation with SPARQL Anything. 21st
International Semantic Web Conference.
Ríos-Vila, A., Calvo-Zaragoza, J., & Paquet, T. (2024).
Sheet Music Transformer: End-To-End Optical Music
Recognition Beyond Monophonic Transcription. In E.
H. Barney Smith, M. Liwicki, & L. Peng (Eds.),