LLUNPIY Preliminary Extension for Simulating Primary Lahars - Application to the 1877 Cataclysmic Event of Cotopaxi Volcano

Guillermo Machado, Valeria Lupiano, Gino Mirocle Crisci, Salvatore Di Gregorio

2015

Abstract

Cotopaxi volcano is one of the most studied and surveyed volcanos in the world because the repetition of the 1877 catastrophic lahar invasion, is not implausible, threatening now more than 100,000 persons. A reliable forecasting tool is very important for projecting security measures. LLUNPIY is a Cellular Automata model for simulating lahars in terms of complex system evolving on the base of local interaction. Here, LLUNPIY extension is applied to Cotopaxi event of 1877 primary lahars, after the successful simulation of some secondary lahars of Tungurahua volcano. Such an extension permitted simulations with different initial hypotheses: our preliminary simulations agree in outline with field studies about the evolution of event, moreover LLUNPIY permits a broader approach to overall phenomenon in comparison with other tools.

References

  1. Avolio M. V., Crisci, G. M., Di Gregorio, S., Rongo, R., Spataro, W. G., Trunfio, A., 2006. SCIARA ?2: an improved Cellular Automata model for Lava Flows and Applications to the 2002 Etnean crisis. Computers & Geosciences, vol 32.
  2. Avolio, M. V., Crisci, G. M., D'Ambrosio, D., Di Gregorio, S., Iovine, G., Rongo, R., Spataro, W., 2003. An extended notion of Cellular Automata for surface flows modelling. WSEAS Transactions on Computers.
  3. Avolio, M. V., Di Gregorio, S., Lupiano, V., Mazzanti, P., 2013. SCIDDICA-SS3: A New Version of Cellular Automata Model for Simulating Fast Moving Landslides. The Journal of Supercomputing,65. SPRINGER.
  4. Avolio, M. V., Di Gregorio, S., Lupiano, V., Mazzanti, P., Spataro, W., 2010. Application context of the SCIDDICA model family for simulations of flow-like landslides. In Proceedings of the 2010 international conference on scientific computing, Las Vegas (USA).
  5. Avolio, M. V., Di Gregorio, S., Spataro, W., Trunfio, G.A., 2012. Theorem about the algorithm of minimization of differences for multicomponent cellular automata. In ACRI 2012, SPRINGER VERLAG.
  6. Avolio, M. V., Lupiano, V., Mazzanti, P., Di Gregorio, S., 2008. Modelling combined subaerial-subaqueous flow-like landslides by cellular automata. In ACRI 2008. SPRINGER VERLAG.
  7. Avolio, M.V ., Lupiano, V., Mazzanti, P., Di Gregorio, S., 2009. A Cellular Automata Model for Flow-type Landslide with Simulations of Subaerial and Subaqueous cases. In Proceedings of EnviroInfo 2009. Berlin, Germany, vol. 1, p. 131-140.
  8. Barclay, J., Alexander, J., Susnik, J., 2007. Rainfallinduced lahars in the Belham Valley, Montserrat, West Indies. Journal of the Geological Society, London 164.
  9. Cáceres B., Ramírez J., Francou B., Eissen J.P., Taupin J. D., Jordan E., Ungerechts L., Maisincho L., Barba D., Cadier E., Bucher R., Peñafiel A., Samaniego P., Mothes P., 2004. Determinación del volumen del casquete de hielo del volcán Cotopaxi. Informe INAMHI, IRD, IG-EPN, INGEOMINAS.
  10. Costa, J. E., 2004. Hydraulic modeling for lahar hazards at Cascades volcanoes. Environmental and Engineering Geosciences £.
  11. Crisci G. M., Di Gregorio S., Rongo R., Spataro W., 2005. PYR: a Cellular Automata model for pyroclastic flows and application to the 1991 Mt. Pinatubo eruption, Future Generation Computer Systems, 21.
  12. D'Ambrosio, D., Di Gregorio, S., Gabriele, S., Gaudio, R., 2001. A Cellular Automata Model for Soil Erosion by Water. Physics and Chemistry of the Earth, EGS, Part B 26(1).
  13. Di Gregorio, S., Serra R., 1999. An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation. Computer Systems.
  14. Hoblitt, R. P., Miller, C. D., Scott, W. E., 1987. Volcanic Hazards with Regard to Siting Nuclear-Power Plants in the Pacific Northwest. U.S. Geological Survey Open-File Report.
  15. Lupiano V., Avolio M. V., Anzidei M., Crisci G. M., Di Gregorio S., 2014a. Susceptibility Assessment of Subaerial (and/or) Subaqueous Debris-Flows in Archaeological Sites, Using a Cellular Model. In Lollino G. et Al. (Eds.) Engineering Geology for Society and Territory, - Volume 8, pp 405-408 Springer Verlag. DOI: 10.1007/978-3-319-09408- 3_70.
  16. Lupiano V., Avolio M. V., Di Gregorio S., Peres D. J., Stancanelli L. M., 2014b. Simulation of 2009 debris flows in the Peloritani Mountains area by SCIDDICASS3. Proceeding of 7th WSEAS International Conference on Engineering Mechanics, Structures, Engineering Geology, Salerno (Italy), pp. 53-61, ISBN: 978-960-474-376-6.
  17. Machado, G., Lupiano, V., Avolio, M. V., Gullace, F., Di Gregorio, S., 2015. A cellular model for secondary lahars and simulation of cases in the Vascún Valley, Ecuador. Submitted to Journal of Computational Science.
  18. Machado, G., Lupiano, V., Avolio, M. V., Di Gregorio, S., 2014. LLUNPIY: Un modelo de Autómatas Celulares para la simulación de Lahares Secundarios, In II Wordshop de Ciencia, Innovación, Teconología y Saberes, At Universidad Nacional de Chimborazo, Riobamba, Ecuador.
  19. Machado, G., Lupiano, V., Avolio, M. V., Di Gregorio, S., 2014. A Preliminary Cellular Model for Secondary Lahars and Simulation of 2005 Case of Vascún Valley, Ecuador, In ACRI 2014, SPRINGER VERLAG.
  20. Major, J. J., Pierson, T. C., Dinehart, R. L., Costa, J. E., 2000. Sediment yield following severe volcanic disturbance a two-decade perspective from Mount St. Helens. Geology, 28.
  21. Manville, V., Hodgson, K. A., Houghton, B. F., Keys, J. R. H., White, J. D. L., 2000. Tephra, snow and water: complex sedimentary responses at an active snowcapped stratovolcano, Ruapehu, New Zealand. Bulletin of Volcanology, 62.
  22. Manville, V., Major, J. J., Fagents, S. A., 2013. Modeling lahar behavior and hazards, In: Modeling Volcanic Processes The Physics and Mathematics of Volcanism, Cambridge University Press, Cambridge.
  23. Mothes, P., Vallance, J. W., 2014. Volcanic Hazards, Risks, and Disasters, In Lahars at Cotopaxi and Tungurahua Volcanoes, Ecuador, Elsevier Inc., New York.
  24. Muñoz-Salinas, E., Castillo-Rodríguez, M., Manea, V., Manea, M., Palacios, D., 2009. Lahar flow simulations using LAHARZ program: application for the Popocatépetl volcano, Mexico. J. Volcanol. Geotherm. Res. 182.
  25. O'Brien, J. S., Julien, P. Y., Fullerton, W. T., 1993. Twodimensional water flood and mudflow simulation. J. Hydraul. Eng. ASCE 119 (2).
  26. Pierson, T. C., Janda, R. J., Thouret, J. C., Borrero C. A., 1990. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J. Volcanol. Geotherm.
  27. Pistolesi, M., Cioni, R., Rosi, M., Aguilera, E., 2014. Lahar hazard assessment in the southern drainage system of Cotopaxi Volcano, Ecuador: Results from multiscale lahar simulations. Geomorphology 207.
  28. Pitman, E. B., Nichita, C. C., Patra, A. K., Bauer, A. C., Sheridan, M. F., Bursik, M., 2003. Computing Granular Avalanches and Landslides. Physics of Fluids 15(12) Press, United States.
  29. Schilling, S. P., 1998. LAHARZ: GIS Programs for Automated Mapping of Lahar-inundation Hazard Zones: U.S. Geological Survey Open-File Report 98- 638.
  30. Smith, G. A., Fritz, W. J., 1989. Volcanic influences on terrestrial sedimentation. Geology.
  31. Sodiro, L., 1877. Relación sobre la eupción del Cotopaxi acaecida el dia 26 de Junio de 1877. Imprenta Nacional, Quito, Ecuador.
  32. Spataro, W., D'Ambrosio, D., Spingola, G., Zito, G., Rongo, R., 2008. libAuToti, A Parallel Cellular Automata Library for Simulation: An example of Application to Landslides. Proceedings of the 2008 Summer Computer Simulation Conference, June 16- 19, 2008, Edinburgh, UK.
  33. Vallance, J. W., 2000. Lahars. In: Sigurdsson, H. (Ed.), Encyclopedia of Volcanoes. Academic.
  34. Vallance, J.W., 2005. Volcanic debris flows. In Debris Flow Hazards and Related Phenomena. PraxisSpringer, Berlin and Heidelberg.
  35. Williams, R., Stinton, A. J., Sheridan, M. F., 2008. Evaluation of the Titan2D two-phase flow model using an actual event: Case study of the 2005 Vazcún Valley Lahar, Journal of Volcanology and Geothermal Research 177.
  36. Wolf, T., 1878. Memoria sobre el Cotopaxi y su Última Erupción Acaecida el 26 de Junio de 1877. Imprenta del Comercio, Guayaquil, Ecuador.
Download


Paper Citation


in Harvard Style

Machado G., Lupiano V., Crisci G. and Di Gregorio S. (2015). LLUNPIY Preliminary Extension for Simulating Primary Lahars - Application to the 1877 Cataclysmic Event of Cotopaxi Volcano . In Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-120-5, pages 367-376. DOI: 10.5220/0005542903670376


in Bibtex Style

@conference{simultech15,
author={Guillermo Machado and Valeria Lupiano and Gino Mirocle Crisci and Salvatore Di Gregorio},
title={LLUNPIY Preliminary Extension for Simulating Primary Lahars - Application to the 1877 Cataclysmic Event of Cotopaxi Volcano},
booktitle={Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2015},
pages={367-376},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005542903670376},
isbn={978-989-758-120-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - LLUNPIY Preliminary Extension for Simulating Primary Lahars - Application to the 1877 Cataclysmic Event of Cotopaxi Volcano
SN - 978-989-758-120-5
AU - Machado G.
AU - Lupiano V.
AU - Crisci G.
AU - Di Gregorio S.
PY - 2015
SP - 367
EP - 376
DO - 10.5220/0005542903670376