Automatic Segmentation of MR Brain Tumor Images using Support Vector Machine in Combination with Graph Cut

Elisabetta Binaghi, Massimo Omodei, Valentina Pedoia, Sergio Balbi, Desiree Lattanzi, Emanuele Monti

2014

Abstract

This work focuses the attention on the automatic segmentation of meningioma from multispectral brain Magnetic Resonance imagery. The Authors address the segmentation task by proposing a fully automatic method hierarchically structured in two phases. The preliminary unsupervised phase is based on Graph Cut framework. In the second phase, preliminary segmentation results are refined using a supervised classification based on Support Vector Machine. The overall segmentation procedure is conceived fully automatic and tailored to non-volumetric data characterized by poor inter-slice spacing, in an attempt to facilitate the insertion in clinical practice. The results obtained in this preliminary study are encouraging and prove that the segmentation benefits from the allied use of Graph Cut and Support Vector Machine frameworks.

References

  1. Balafar, M., Ramli, A., Saripan, M., Mashohor, S., 2010. 'Review of brain MRI image segmentation methods.'Artificial Intelligence Review, 33, 261-274.
  2. Bauer, S., Nolte, L-P., Reyes, M., 2011. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: MICCAI Int. Conf. on Medical Image Computing and Computer Assisted Interventions Berlin: Springer).
  3. Bauer, S., Wiest, R., Nolte, L-P., Reyes, M., 2013. 'A survey of MRI-based medical image analysis for brain tumor studies.78 Phys. Med. Biol., 58, R97-R129.
  4. Boykov, Y., Kolmogorov, V., 2004. 78 An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision.78 PAMI , 26, 1124- 37.
  5. Boykov, Y., Funka-Lea, G., 2006. 78 Graph cuts and efficient n-d image segmentation.78 Int. J. Comput. Vision, 70, 109-131.
  6. Bouix, S., Martin-Fernandez, M., Ungar, L., Koo, M.N.M.S., McCarley, R.W., Shenton, M.E., 2007. 'On evaluating brain tissue classifiers without a ground truth.78 NeuroImage, 36, 1207-24.
  7. Caroli, M., Locatelli M., Prada F., Beretta F., MartinelliBoneschi F., Campanella R., Arienta C., 2005. 'Surgery for intracranial meningiomas in the elderly: a clinical-radiological grading system as a predictor of 78 J Neurosurg, 102, 290-294 .
  8. Clarke, L.P., Velthuizen, R., Camacho, M., Heine, J., Vaidyanathan, M., Hall, L., Thatcher, R., Silbiger, M. S., 1995. 78 MRI segmentation: methods and applications.78 Magn Reson Imaging, 13(3), 343-36.
  9. Gordillo, N., Montseny, E, Sobrevilla, P., 2013, 'State of the art survey on MRI brain tumor segmentation.78 Magn Reson Imaging, 31(8), 1426-38.
  10. Greenberg, H., Chandler, W., Sandler, H., 1999. Brain Tumors, Oxford University Press, Oxford.
  11. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A., 2006. 'Automatic anatomical brain mri segmentation combining label propagation and decision fusion.78 NeuroImage, 33(1), 115 - 126.
  12. Kaus, M., Warfield, S., Nabavi, A., Black, P. M., Jolesz, F. A., Kikinis, R., 2001. 'Automated segmentation of MRI of brain tumors.78 Radiology, 218, 586-591.
  13. Peng, Y., Liu, R., 2010. Object segmentation based on watershed and graph cut. In: 3rd International Congress on Image and Signal Processing (CISP).
  14. Rother, C., Kolmogorov, V., Blake, A., 2004. 78”grabcut”: interactive foreground extraction using iterated graph cuts.78 ACM Trans. Graph., 23(3), 309- 314.
  15. Santle, K. Camilus, Govindan ,V. K., 2012. 78 A Review on Graph Based Segmentation.78 IJIGSP, 4(5), 1-13.
  16. Schoelkopf, B., Smola, A. 2002. Learning with kernels: support vector machines, regularization, optimization, and beyond, MIT Press .
  17. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J., 2002. Least Squares Support Vector Machines. World Scientific Publishing Co., Singapore.
  18. Vapnik, V.N., 1995. The Nature of Statistical Learning Theory, Springer-Verlag, New York.
  19. Verma, R., Zacharaki, E., Ou, Y., Cai, H., Chawla, S., Lee, S., Melhem, E., Wolf, R., Davatzikos, C., 2008. 'Multiparametric Tissue Characterization of Brain Neoplasms and Their Recurrence Using Pattern Classification of MR Images.78 Acad. Radiol., 15(8), 966-977.
  20. Williams, G.W., 1972. 'Comparing the joint agreement of several raters with another rater.78 Bio-metrics, 32, 619-627.
  21. Withey, D., Koles, Z., 2008. 'A review of medical image segmentation: methods and available software.78 Int. J. Bioelectromagn, 10(3), 125 -148.
  22. Wu, Z., Leahy, R., 1993. 'An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation.78 IEEE. Trans. on Pattern Analysis and Machine Intelligence, 15 (11), 1101-13.
Download


Paper Citation


in Harvard Style

Binaghi E., Omodei M., Pedoia V., Balbi S., Lattanzi D. and Monti E. (2014). Automatic Segmentation of MR Brain Tumor Images using Support Vector Machine in Combination with Graph Cut . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014) ISBN 978-989-758-054-3, pages 152-157. DOI: 10.5220/0005068501520157


in Bibtex Style

@conference{ncta14,
author={Elisabetta Binaghi and Massimo Omodei and Valentina Pedoia and Sergio Balbi and Desiree Lattanzi and Emanuele Monti},
title={Automatic Segmentation of MR Brain Tumor Images using Support Vector Machine in Combination with Graph Cut},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)},
year={2014},
pages={152-157},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005068501520157},
isbn={978-989-758-054-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)
TI - Automatic Segmentation of MR Brain Tumor Images using Support Vector Machine in Combination with Graph Cut
SN - 978-989-758-054-3
AU - Binaghi E.
AU - Omodei M.
AU - Pedoia V.
AU - Balbi S.
AU - Lattanzi D.
AU - Monti E.
PY - 2014
SP - 152
EP - 157
DO - 10.5220/0005068501520157