COMPRESSION OF HYPERSPECTRAL IMAGERY VIA LINEAR PREDICTION

Bruno Carpentieri, Francesco Rizzo, Giovanni Motta, James A. Storer

2004

Abstract

(Motta et al., 2003) proposed a Locally Optimal Vector Quantizer (LPVQ) for lossless encoding of hyperspectral data, in particular, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. In this paper we first show how it is possible to improve the baseline LPVQ algorithm via linear prediction techniques, band reordering and least squares optimization. Then, we use this knowledge to devise a new lossless compression method for AVIRIS images. This method is based on a low complexity, linear prediction approach that exploits the linear nature of the correlation existing between adjacent bands. A simple heuristic is used to detect contexts in which such prediction is likely to perform poorly, thus improving overall compression and requiring only marginal extra storage space. A context modeling mechanism coupled with a one band look ahead capability allows the proposed algorithm to match LPVQ compression performances at a fraction of its space and time requirements. This makes the proposed method suitable to applications where limited hardware is a key requirement, spacecraft on board implementation. We also present a least squares optimized linear prediction for AVIRIS images which, to the best of our knowledge, outperforms any other method published so far.

References

  1. Abousleman, G. P. (1995). Compression of hyperspectral imagery using hybrid DPCM/DCT and entropy constrained trellis coded quantization. In Storer, J. A. and Cohn, M., editors, Proceedings Data Compression Conference, pages 322-331. IEEE Computer Society Press.
  2. Abousleman, G. P., Lam, T.-T., and Karam, L. J. (2002). Robust hyperspectral image coding with channeloptimized trellis-coded quantization. IEEE Transactions on Geoscience and Remote Sensing, 40(4):820-830.
  3. Aiazzi, B., Alparone, L., and Baronti, S. (2001). Nearlossless compression of 3-D optical data. IEEE Transactions on Geoscience and Remote Sensing, 39(11):2547-2557.
  4. Barequet, R. and Feder, M. (1999). SICLIC: A simple intercolor lossless image coder. In Storer, J. A. and Cohn, M., editors, Proceedings of the Data Compression Conference, pages 501-510, Snowbird, Utha. IEEE Computer Society Press.
  5. Brunello, D., Calvagno, G., Mian, G. A., and Rinaldo, R. (2002). Lossless video coding using optimal 3D prediction. In Proceedings of the 9th IEEE International Conference on Image Processing (ICIP 2002), volume 1, pages 89-92, Rochester, NY. IEEE Signal Processing Society.
  6. CCSDS (1997). Consulting Committee for Space Data Systems, ”Recommendation for space data system standards: Lossless data compression”. CCSDS 121.0-B-1, Blue Book.
  7. Gabow, H. N., Galil, Z., Spencer, T., and Tarjan, T. R. (1986). Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica, 6(2):109-122.
  8. Gong, Y., Fan, M. K. H., and Huang, C.-M. (2000). Image compression using lossless coding on VQ indexes. In Storer, J. A. and Cohn, M., editors, Proceedings of the Data Compression Conference, page 583, Snowbird, Utha. IEEE Computer Society Press.
  9. Manohar, M. and Tilton, J. C. (2000). Browse level compression of AVIRIS data using vector quantization on massively parallel machine. In Proceedings AVIRIS Airborne Geoscience Workshop.
  10. Mielikäinen, J., Kaarna, A., and Toivanen, P. (2002). Lossless hyperspectral image compression via linear prediction. Proceedings of SPIE, 4725(8):600-608.
  11. Mielikäinen, J. and Toivanen, P. (2002). Improved vector quantization for lossless compression of AVIRIS images. In Proceedings of the XI European Signal Processing Conference, EUSIPCO-2002, Toulouse, France. EURASIP.
  12. Motta, G., Rizzo, F., and Storer, J. A. (2003). On the compression of hyperspectral imagery. In Storer, J. A. and Cohn, M., editors, Proceedings of the Data Compression Conference, Snowbird, Utha. IEEE Computer Society Press.
  13. Motta, G. and Weinberger, M. J. (2001). Compression of polynomial texture maps. Technical Report 143 (R.2), HP Laboratories Palo Alto.
  14. NASA (2003). AVIRIS home page. http://popo.jpl.nasa.gov.
  15. Nasrabadi, N. M. and Feng, Y. (1990). Image compression using address-vector quantization. IEEE Transactions on Communication, 38:2166-2173.
  16. Pickering, M. and Ryan, M. (2001). Efficient spatialspectral compression of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39(7):1536-1539.
  17. Ryan, M. J. and Arnold, J. F. (1997). The lossless compression of AVIRIS images by vector quantization. IEEE Transactions on Geoscience and Remote Sensing, 35(3):546-550.
  18. Tate, S. R. (1997). Band ordering in lossless compression of multispectral images. IEEE Transactions on Computers, 46:477-483.
  19. Taubman, D. and Marcellin, M. W. (2001). Jpeg2000: Image Compression Fundamentals, Standards, and Practice. Kluwer Academic Publishers, Boston, MA.
  20. Weinberger, M. J., Seroussi, G., and Sapiro, G. (1996). LOCO-I: A low complexity, context-based, lossless image compression algorithm. In Storer, J. A. and Cohn, M., editors, Proceedings of the Data Compression Conference, pages 140-149, Snowbird, Utha. IEEE Computer Society Press.
  21. Wu, X., Barthel, K. U., and Zhang, W. (1998). Piecewise 2D autoregression for predictive image coding. In Proceedings of the International Conference on Image Processing (ICIP 1998), volume 3, pages 901-904. IEEE Signal Processing Society.
Download


Paper Citation


in Harvard Style

Carpentieri B., Rizzo F., Motta G. and A. Storer J. (2004). COMPRESSION OF HYPERSPECTRAL IMAGERY VIA LINEAR PREDICTION . In Proceedings of the First International Conference on E-Business and Telecommunication Networks - Volume 3: ICETE, ISBN 972-8865-15-5, pages 317-324. DOI: 10.5220/0001391703170324


in Bibtex Style

@conference{icete04,
author={Bruno Carpentieri and Francesco Rizzo and Giovanni Motta and James A. Storer},
title={COMPRESSION OF HYPERSPECTRAL IMAGERY VIA LINEAR PREDICTION},
booktitle={Proceedings of the First International Conference on E-Business and Telecommunication Networks - Volume 3: ICETE,},
year={2004},
pages={317-324},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001391703170324},
isbn={972-8865-15-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on E-Business and Telecommunication Networks - Volume 3: ICETE,
TI - COMPRESSION OF HYPERSPECTRAL IMAGERY VIA LINEAR PREDICTION
SN - 972-8865-15-5
AU - Carpentieri B.
AU - Rizzo F.
AU - Motta G.
AU - A. Storer J.
PY - 2004
SP - 317
EP - 324
DO - 10.5220/0001391703170324