EVOLUTIONARY LEARNING OF FUZZY RULES IN A MODIFIED CLASSIFIER SYSTEM FOR MOBILE AGENTS CONTROL

Eric Vallejo Rodríguez, Ginés Benet Gilabert

2005

Abstract

In this work we present the creation of a platform, along with an algorithm to evolve the learning of FLCs, especially aiming to the development of fuzzy controllers for mobile robot navigation. The structure has been proven on a Kephera robot. The conceptual aspects that sustain the work include topics such as Artificial Intelligence (AI), control advanced techniques, sensorial systems and mechatronics. Topics related with the control and automatic navigation of robotic systems especially with learning are approached, based on the Fuzzy Logic theory and evolutionary computing. We can say that our structure corresponds basically to a Classifier System, with appropriate modifications for the objective of generating controllers for mobile robot trajectories. The more stress is made on genetic profile than in the characteristics of the individuals and on the other, the strategy of distribution of the reinforcement is emphasized, fundamental aspects on which the work seeks to contribute.

References

  1. Athans, M., 1998 “Why I Despise Fuzzy Feedback Control” IEEE CDC/98 Debates, Tampa, Florida.
  2. Bonarini, A., 1994 “Evolutionary learning of general fuzzy rules with biased evaluation functions: competition and cooperation”. Proceedings. of the IEEE World congress on Computational Intelligence (WCCI) - Evolutionary Computation, IEEE Computer Press, Piscataway, NJ, 51-56.
  3. Bonarini, A., 1996 “Learning behaviors implemented as Fuzzy Logic Controllers for Autonomous Agents”. Proceedings of the WEC2, University of Nagoya, Nagoya, J, 21-24.
  4. Braitenberg, V., 1984, Fourth printing (1994) “Vehicles”, MIT press, Bradford Books, England.
  5. Brooks, R., 1985 “A Robust Layered Control System for a Mobile Robot”, A. I. Memo 864, MIT, Artificial Intelligence Laboratory.
  6. De Andrés, T., 2002 “Homo cybersapiens: La inteligencia artificial y la humana”. EUNSA, España, ISBN: 84- 313-1982-8.
  7. Gulley, N., et. al., 1995 “Fuzzy Logic Toolbox”. MathWorks.
  8. Murphy, R., 2000 “Introduction to AI Robotics”, MIT press, Bradford Books, England, ISBN: 0-262-13383- 0.
  9. Nilsson, N., 2001 “Inteligencia Artificial; una nueva síntesis”, Ed. McGraw-Hill, España, ISBN: 84-481- 2824-9.
  10. Nilsson, T., 2001 “KIKS User Guide”. www.tstorm.se/projects/kiks/.
  11. Passino, K., Özgüner Ü., 1996 “Intelligent Control: From Theory to Application”, Guest Editors' Introduction to the IEEE Expert Special Track on Intelligent Control, Volume 11, No. 2, pp. 28-30.
  12. K-Team, 1999 “Khepera User Manual”, www.kteam.com.
Download


Paper Citation


in Harvard Style

Vallejo Rodríguez E. and Benet Gilabert G. (2005). EVOLUTIONARY LEARNING OF FUZZY RULES IN A MODIFIED CLASSIFIER SYSTEM FOR MOBILE AGENTS CONTROL . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 972-8865-30-9, pages 62-69. DOI: 10.5220/0001189000620069


in Bibtex Style

@conference{icinco05,
author={Eric Vallejo Rodríguez and Ginés Benet Gilabert},
title={EVOLUTIONARY LEARNING OF FUZZY RULES IN A MODIFIED CLASSIFIER SYSTEM FOR MOBILE AGENTS CONTROL},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2005},
pages={62-69},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001189000620069},
isbn={972-8865-30-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - EVOLUTIONARY LEARNING OF FUZZY RULES IN A MODIFIED CLASSIFIER SYSTEM FOR MOBILE AGENTS CONTROL
SN - 972-8865-30-9
AU - Vallejo Rodríguez E.
AU - Benet Gilabert G.
PY - 2005
SP - 62
EP - 69
DO - 10.5220/0001189000620069