A Support System for Fisheries Based on Neural Networks
Alfonso Iglesias, Bernardino Arcay, Alejandra Rodríguez, Manuel Cotos
2005
Abstract
This paper presents the foundations of a decision support system for the localisation of fisheries based on AI techniques. The purpose of such a system is to reduce the costs of fishing fleets without endangering the sustainable development of the natural resources. Our data sources are satellite images (OrbView-2, Series NOAA, Topex/Poseidon), as well as real catch data obtained from the fishing log of a pilot boat. We have compared neural networks, ANFIS, and functional networks, and we have exported the results to a SIG. The best results were obtained for a perceptron trained with the Backpropagation method.
References
- Triñanes J. A.. Sistema de información basado en tededetección para ayuda a la explotación operacional de pesquerías de túnidos y otras especies pelágicas. Tesis doctoral. Departamento Electrónica e Computación, Universidad de Santiago. (Febrero 1998)
- Iglesias A. Sistema de apoyo a la explotación operacional de pesquerías basado en técnicas de inteligencia artificial y teledetección. Departamento de Electrónica y Computación, Facultad de Física, Universidad de Santiago de Compostela. (Mayo 2003)
- Cotos J. M. Dinámica y clasificación de estructuras oceánicas para aplicación operacional de pesquerías utilizando teledetección e ingeniería de conocimiento. Tesis doctoral. Departamento de Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela. (Septiembre 1994)
- Wells W. M. Efficient Synthesis of Gaussian Filters by Cascaded Uniform Filters. IEEE Trans. Pattern Analysis and Machine Intelligence-9 No. 2 March 1986.
- Harlow C. A., Trivedi M. M., y Conners R. W. Use of texture operators in segmentation. Optical Engineering, vol. 25 , no. 11, pp. 1200-1206, Nov. (1986)
- Komatsu T., Aoki I., Mitani I., y Ishii T. Prediction o the Catch o Japanese Sardine Larvae in Sagami Bay Using a Neural Network. Fisheries Science 60(4),385-391 (1994).
- Aurelle D., Lek S., Giraudel J., Berrebi P. Microsatellites and artificial neural networks: tools for the discrimination between natural and hatchery brown trout (Salmo trutta, L.) in Atlantic populations. Ecological Modelling 120 313-324. (1999)
- Dreyfus-Leon M. J. Individual-based modelling of fishermen search behauviour with neural networks and reinforcement learning. Ecological Modelling 120 287-297. (1999)
- Aussem A., Hill D.. Neural-network metamodelling for the prediction of Caulerpa taxifolia development in the Mediterranean sea. Neurocomputing 30 ; 71-78 (2000)
- Brosse S., Guegan J., Tourenq J., Lek S.. The use of artificial neural network to assess fish abundance and spacial occupancy in the litoral zone of a mesotropic lake. Ecological Modelling 120:299-311. (1999)
- Maas O., Boulanger J., Thiria S. Use of neural networks for predictions using time series: Illustration with the El Niño Southern oscillation phenomenon”. Neurocomputing 30: 53- 58. (2000)
- Specht D. F. Probabilistic Neural Networks. Neural Networks, 3,109-118. (1990)
- Zhang Q. and Benveniste A. Wavelet Neural Networks. IEEE Transactions on Neural Networks, 3, 889-898.
- Castillo E. and Gutiérrez J.M. Nonlinear Time Series Modeling and Prediction Using Functional Networks. Extracting Information Masked by Chaos. Physics Letters A, Vol. 244, 71-84 (1998).
- Castillo E., Cobo A., Gutiérrez J.M., and Pruneda E. Introduction to Functional Networks with Applications. A Neural Based Paradigm. Kluwer International Publishers (1999).
- Takagi T. y Sugeno M.. Derivation of fuzzy control rules from human operators control actions. Proc. Of the IFAC Symp. On Fuzzy Information, Knowledge Representation and Decision Analysis, pages 55-60. (July 1983)
- Jang J.-S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man., Cybern, vol.23, no.5, pp. 665-685. (1993)
- Gorman R. P. y Sejnowski, T. J. Learned Classification of Sonar Targets Using a Massively Parallel Network. IEEE Transactions on Acoustics, Speech, and Signal Processing. 36:1135-1140. (1998)
- Rumelhart D.E., Hinton, G. E. y Williams, R. J. Learning internal representations by errors propagation. In Parallel distributed processing: Explotations in the microstructure of cognitron. Vol. 1. D.E. Rumelhart and J.L. Mac Clelland, Cap. 8. MIT Press. (1986)
- Iglesias A., B. Arcay, J.M. Cotos. Optimisation of fishing predictions by means of Artificial Neural Networks, ANFIS, Functional Networks and Remote Sensing images. Expert Systems with Applications. Aceptado y pendiente de publicación.
Paper Citation
in Harvard Style
Iglesias A., Arcay B., Rodríguez A. and Cotos M. (2005). A Support System for Fisheries Based on Neural Networks . In Proceedings of the 1st International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2005) ISBN 972-8865-36-8, pages 112-121. DOI: 10.5220/0001194401120121
in Bibtex Style
@conference{anniip05,
author={Alfonso Iglesias and Bernardino Arcay and Alejandra Rodríguez and Manuel Cotos},
title={A Support System for Fisheries Based on Neural Networks},
booktitle={Proceedings of the 1st International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2005)},
year={2005},
pages={112-121},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001194401120121},
isbn={972-8865-36-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2005)
TI - A Support System for Fisheries Based on Neural Networks
SN - 972-8865-36-8
AU - Iglesias A.
AU - Arcay B.
AU - Rodríguez A.
AU - Cotos M.
PY - 2005
SP - 112
EP - 121
DO - 10.5220/0001194401120121