USING dmFSQL FOR FINANCIAL CLUSTERING

Ramón Alberto Carrasco, María Amparo Vila, José Galindo

2005

Abstract

At present, we have a dmFSQL server available for Oracle© Databases, programmed in PL/SQL. This server allows us to query a Fuzzy or Classical Database with the dmFSQL (data mining Fuzzy SQL) language for any data type. The dmFSQL language is an extension of the SQL language, which permits us to write flexible (or fuzzy) conditions in our queries to a fuzzy or traditional database. In this paper, we propose the use of the dmFSQL language for fuzzy queries as one of the techniques of Data Mining, which can be used to obtain the clustering results in real time. This enables us to evaluate the process of extraction of information (Data Mining) at both a practical and a theoretical level. We present a new version of the prototype, called DAPHNE, for clustering witch use dmFSQL. We consider that this model satisfies the requirements of Data Mining systems (handling of different types of data, high-level language, efficiency, certainty, interactivity, etc) and this new level of personal configuration makes the system very useful and flexible.

References

  1. J.P. Benzécri et coll, 1976. L'analyse des données; Tomo I: La Taxinomie; Tomo II: L'analyse des correspondences. Paris, Dunod.
  2. R.A. Carrasco, J. Galindo, M.A. Vila, J.M. Medina, 1999. Clustering and Fuzzy Classification in a Financial Data Mining Environment. 3rd International ICSC Symposium on Soft Computing, SOCO'99, pp. 713- 720, Genova (Italy), June 1999.
  3. R.A. Carrasco, J. Galindo, A. Vila, 2001. Using Artificial Neural Network to Define Fuzzy Comparators in FSQL with the Criterion of some Decision-Maker. In Bio-inspired applications of connectionism.-2001, eds. J. Mira and A. Prieto, Lecture Notes in Computer Science (LNCS) 2085, pp. 587-594. Ed. SpringerVerlag, 2001, ISBN: 3-540-42237-4.
  4. R.A. Carrasco, M.A. Vila, J. Galindo, 2002. FSQL: a Flexible Query Language for Data Mining. In Enterprise Information Systems IV, eds. M. Piattini, J. Filipe and J. Braz, pp. 68-74. Ed. Kluwer Academic Publishers, 2002, ISBN: 1-4020-1086-9.
  5. M. Chen, J. Han, P.S. Yu, 1996. Data Mining: An overview from a Data Base Perspective. IEEE Transac. On Knowledge and Data Engineering, Vol 8- 6 pp. 866-883.
  6. M. Delgado, A.F. Gómez-Skarmeta, A. Vila, 1996. On the Use of Hierarchical Clustering. In Fuzzy Modelling. International Journal of Approximate Reasoning, 14, pp. 237-257.
  7. W.J. Frawley, G. Piatetsky-Shapiro, C.J. Matheus, 1991. Knowledge Discovery in Databases: An Overview. In G. Piatetsky-Shapiro, W.J. Frawley eds. Knowledge Discovery in Databases pp. 1-31, The AAAI Press.
  8. J. Galindo, J.M. Medina, O. Pons, J.C. Cubero, 1998. A Server for Fuzzy SQL Queries. In Flexible Query Answering Systems, eds. T. Andreasen, H. Christiansen and H.L. Larsen, Lecture Notes in Artificial Intelligence (LNAI) 1495, pp. 164-174. Ed. Springer.
  9. J. Galindo, J.M. Medina, A. Vila, O. Pons, 1998. Fuzzy Comparators for Flexible Queries to Databases. Iberoamerican Conference on Artificial Intelligence, IBERAMIA'98, pp. 29-41, Lisbon (Portugal), October 1998.
  10. J. Galindo, J.M. Medina, J.C. Cubero, O. Pons, 1999. Management of an Estate Agency Allowing Fuzzy Data and Flexible Queries. EUSFLAT-ESTYLF Joint Conference, pp. 485-488, Palma de Mallorca (Spain), September 1999.
  11. M.J. Martín-Bautista, M.A. Vila, 1998. Applying Genetic Algorithms to the Feature Selection Problem in Information Retrieval. In Flexible Query Answering Systems, eds. T. Andreasen, H. Christiansen and H.L. Larsen, Lecture Notes in Artificial Intelligence (LNAI) 1495, pp. 272-281. Ed. Springer.
  12. M.J. Quinn, 2003. Parallel Programming in C with MPI and OpenMP. McGraw-Hill.
  13. F.E. Petry, 1996. Fuzzy Databases: Principles and Application (with chapter contribution by Patrick Bosc). International Series in Intelligent Technologies. Ed. H.-J. Zimmermann. Kluwer Academic Publishers (KAP).
  14. M.A. Vila, 1979. Nota sobre el cálculo de particiones óptimas obtenidas a partir de una clasificación con jerárquica. Actas de la XI Reunión Nacional de I.O., Sevilla, España.
Download


Paper Citation


in Harvard Style

Alberto Carrasco R., Amparo Vila M. and Galindo J. (2005). USING dmFSQL FOR FINANCIAL CLUSTERING . In Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 972-8865-19-8, pages 135-141. DOI: 10.5220/0002526801350141


in Bibtex Style

@conference{iceis05,
author={Ramón Alberto Carrasco and María Amparo Vila and José Galindo},
title={USING dmFSQL FOR FINANCIAL CLUSTERING},
booktitle={Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2005},
pages={135-141},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002526801350141},
isbn={972-8865-19-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - USING dmFSQL FOR FINANCIAL CLUSTERING
SN - 972-8865-19-8
AU - Alberto Carrasco R.
AU - Amparo Vila M.
AU - Galindo J.
PY - 2005
SP - 135
EP - 141
DO - 10.5220/0002526801350141